粒子群优化:一种综合的理论方法

Chao-Wei Chou, Hsin-Hui Lin, Jiann-Horng Lin
{"title":"粒子群优化:一种综合的理论方法","authors":"Chao-Wei Chou, Hsin-Hui Lin, Jiann-Horng Lin","doi":"10.1109/ICCCYB.2006.305693","DOIUrl":null,"url":null,"abstract":"In this paper, a general and integrated form is proposed for the different kinds of particle swarm optimization. Also, some related theoretical results are given, including a convergence theorem for the random selection case and a lemma on probability percentile. To compare different PSO algorithms in effectiveness and efficiency, we propose three comparison indexes of universal standard.","PeriodicalId":160588,"journal":{"name":"2006 IEEE International Conference on Computational Cybernetics","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Note on Particle Swarm Optimization: An integrated and theoretical approach\",\"authors\":\"Chao-Wei Chou, Hsin-Hui Lin, Jiann-Horng Lin\",\"doi\":\"10.1109/ICCCYB.2006.305693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a general and integrated form is proposed for the different kinds of particle swarm optimization. Also, some related theoretical results are given, including a convergence theorem for the random selection case and a lemma on probability percentile. To compare different PSO algorithms in effectiveness and efficiency, we propose three comparison indexes of universal standard.\",\"PeriodicalId\":160588,\"journal\":{\"name\":\"2006 IEEE International Conference on Computational Cybernetics\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Computational Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCYB.2006.305693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Computational Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCYB.2006.305693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文针对不同类型的粒子群优化问题,提出了一种通用的综合形式。并给出了一些相关的理论结果,包括随机选择情况下的收敛定理和概率百分位数的引理。为了比较不同粒子群算法的有效性和效率,我们提出了三个通用标准的比较指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on Particle Swarm Optimization: An integrated and theoretical approach
In this paper, a general and integrated form is proposed for the different kinds of particle swarm optimization. Also, some related theoretical results are given, including a convergence theorem for the random selection case and a lemma on probability percentile. To compare different PSO algorithms in effectiveness and efficiency, we propose three comparison indexes of universal standard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信