声学边界问题的非自伴随模型表述。第1部分

B. A. Kasatkin, N. V. Zlobina, L. Statsenko, S. Kasatkin
{"title":"声学边界问题的非自伴随模型表述。第1部分","authors":"B. A. Kasatkin, N. V. Zlobina, L. Statsenko, S. Kasatkin","doi":"10.59887/2073-6673.2023.16(2)-8","DOIUrl":null,"url":null,"abstract":"Based on the mathematical definition of a non-self-adjoint operator and the physical meaning of a specific boundary value problem, a non-self-adjoint model statement of boundary value problems in acoustics is formulated. As an example, boundary value problems for the reflection of a plane wave and a spherical wave at the interface between two liquid media are considered. A new definition of the reflection coefficient of a spherical wave is introduced. In the region of subcritical angles of incidence, the new definition takes into account the appearance in the total sound field of converging recoil waves corresponding to the eigenfunctions of the adjoint operator. In the region of supercritical angles of incidence, the participation of the eigenfunctions of two conjugate operators in the total sound field forms a nonzero power flux through the interface and its transformation into the vortex component of the intensity vector at the total internal reflection horizon. The definition of the total internal reflection horizon is given. Experimental data are presented that confirm the new definition of the reflection coefficient and the physical correctness of the non-self-adjoint model statement.","PeriodicalId":218146,"journal":{"name":"Fundamental and Applied Hydrophysics","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-self-adjoint model statement of boundary problem of acoustics. Part 1\",\"authors\":\"B. A. Kasatkin, N. V. Zlobina, L. Statsenko, S. Kasatkin\",\"doi\":\"10.59887/2073-6673.2023.16(2)-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the mathematical definition of a non-self-adjoint operator and the physical meaning of a specific boundary value problem, a non-self-adjoint model statement of boundary value problems in acoustics is formulated. As an example, boundary value problems for the reflection of a plane wave and a spherical wave at the interface between two liquid media are considered. A new definition of the reflection coefficient of a spherical wave is introduced. In the region of subcritical angles of incidence, the new definition takes into account the appearance in the total sound field of converging recoil waves corresponding to the eigenfunctions of the adjoint operator. In the region of supercritical angles of incidence, the participation of the eigenfunctions of two conjugate operators in the total sound field forms a nonzero power flux through the interface and its transformation into the vortex component of the intensity vector at the total internal reflection horizon. The definition of the total internal reflection horizon is given. Experimental data are presented that confirm the new definition of the reflection coefficient and the physical correctness of the non-self-adjoint model statement.\",\"PeriodicalId\":218146,\"journal\":{\"name\":\"Fundamental and Applied Hydrophysics\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental and Applied Hydrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59887/2073-6673.2023.16(2)-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental and Applied Hydrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59887/2073-6673.2023.16(2)-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于非自伴随算子的数学定义和特定边值问题的物理意义,给出了声学边值问题的非自伴随模型表述。作为一个例子,考虑了平面波和球面波在两种液体介质界面处反射的边值问题。介绍了球面波反射系数的新定义。在亚临界入射角区域,新定义考虑了伴随算子特征函数对应的收敛反冲波在总声场中的表现。在超临界入射角区域,两个共轭算子的本征函数在总声场中的参与通过界面形成非零功率通量,并在全内反射水平面上转化为强度矢量的涡分量。给出了全内反射视界的定义。实验数据证实了反射系数的新定义和非自伴随模型表述的物理正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-self-adjoint model statement of boundary problem of acoustics. Part 1
Based on the mathematical definition of a non-self-adjoint operator and the physical meaning of a specific boundary value problem, a non-self-adjoint model statement of boundary value problems in acoustics is formulated. As an example, boundary value problems for the reflection of a plane wave and a spherical wave at the interface between two liquid media are considered. A new definition of the reflection coefficient of a spherical wave is introduced. In the region of subcritical angles of incidence, the new definition takes into account the appearance in the total sound field of converging recoil waves corresponding to the eigenfunctions of the adjoint operator. In the region of supercritical angles of incidence, the participation of the eigenfunctions of two conjugate operators in the total sound field forms a nonzero power flux through the interface and its transformation into the vortex component of the intensity vector at the total internal reflection horizon. The definition of the total internal reflection horizon is given. Experimental data are presented that confirm the new definition of the reflection coefficient and the physical correctness of the non-self-adjoint model statement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信