基于传感器的移动机器人在复杂动态环境中的无碰撞规避算法

Dimitri Leca, V. Cadenat, T. Sentenac
{"title":"基于传感器的移动机器人在复杂动态环境中的无碰撞规避算法","authors":"Dimitri Leca, V. Cadenat, T. Sentenac","doi":"10.1109/ECMR.2019.8870344","DOIUrl":null,"url":null,"abstract":"This paper deals with the problem of navigation of unmanned vehicles through poorly known environments cluttered with static and dynamic obstacles. The robot is equipped with a LiDAR able to provide a scan of the surroundings and with classical dedicated localization sensors (odometry, IMU). The proposed navigation strategy relies on: (i) a new concept called Enhanced Laser Scan (ELS), which is built from the current laser scan by adding virtual points along the predicted trajectory of the obstacles; (ii) two sensor-based controllers allowing respectively to reach the goal and to avoid obstacles. These controllers relying on the richer information provided by the ESL, they will be able to anticipate and safely avoid both static and moving obstacles; (iii) a high-level decision process allowing a better choice of the sense-of-motion (SOM) around the obstacle and its reassessment if needed.","PeriodicalId":435630,"journal":{"name":"2019 European Conference on Mobile Robots (ECMR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sensor-based algorithm for collision-free avoidance of mobile robots in complex dynamic environments\",\"authors\":\"Dimitri Leca, V. Cadenat, T. Sentenac\",\"doi\":\"10.1109/ECMR.2019.8870344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the problem of navigation of unmanned vehicles through poorly known environments cluttered with static and dynamic obstacles. The robot is equipped with a LiDAR able to provide a scan of the surroundings and with classical dedicated localization sensors (odometry, IMU). The proposed navigation strategy relies on: (i) a new concept called Enhanced Laser Scan (ELS), which is built from the current laser scan by adding virtual points along the predicted trajectory of the obstacles; (ii) two sensor-based controllers allowing respectively to reach the goal and to avoid obstacles. These controllers relying on the richer information provided by the ESL, they will be able to anticipate and safely avoid both static and moving obstacles; (iii) a high-level decision process allowing a better choice of the sense-of-motion (SOM) around the obstacle and its reassessment if needed.\",\"PeriodicalId\":435630,\"journal\":{\"name\":\"2019 European Conference on Mobile Robots (ECMR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 European Conference on Mobile Robots (ECMR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECMR.2019.8870344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMR.2019.8870344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了无人驾驶车辆在充满静态和动态障碍物的未知环境中的导航问题。该机器人配备了能够扫描周围环境的激光雷达和经典的专用定位传感器(里程计,IMU)。提出的导航策略依赖于:(i)一种称为增强激光扫描(ELS)的新概念,该概念是通过在障碍物的预测轨迹上添加虚拟点来构建当前激光扫描的;(ii)两个基于传感器的控制器,分别允许到达目标和避开障碍物。这些控制器依赖于ESL提供的更丰富的信息,他们将能够预测并安全地避开静态和移动的障碍物;(iii)一个高层次的决策过程,允许更好地选择围绕障碍物的运动感觉(SOM),并在需要时对其进行重新评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensor-based algorithm for collision-free avoidance of mobile robots in complex dynamic environments
This paper deals with the problem of navigation of unmanned vehicles through poorly known environments cluttered with static and dynamic obstacles. The robot is equipped with a LiDAR able to provide a scan of the surroundings and with classical dedicated localization sensors (odometry, IMU). The proposed navigation strategy relies on: (i) a new concept called Enhanced Laser Scan (ELS), which is built from the current laser scan by adding virtual points along the predicted trajectory of the obstacles; (ii) two sensor-based controllers allowing respectively to reach the goal and to avoid obstacles. These controllers relying on the richer information provided by the ESL, they will be able to anticipate and safely avoid both static and moving obstacles; (iii) a high-level decision process allowing a better choice of the sense-of-motion (SOM) around the obstacle and its reassessment if needed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信