基于分布的模糊时间序列马尔可夫链模型预测万隆通货膨胀

Salsabila Ayu Pratiwi, Dewi Rachmatin, R. Marwati
{"title":"基于分布的模糊时间序列马尔可夫链模型预测万隆通货膨胀","authors":"Salsabila Ayu Pratiwi, Dewi Rachmatin, R. Marwati","doi":"10.15575/kubik.v7i1.18156","DOIUrl":null,"url":null,"abstract":"This study discusses the application of the Fuzzy Time Series Markov Chain method which was developed by determining the length of the interval using the distribution method. In the fuzzy forecasting method, the determination of the length of the interval is an important thing that will affect the accuracy of the forecasting results. The development of this forecasting model aims to get better forecasting accuracy results. In this study, general inflation data for the city of Bandung is used for the period January 2016 – June 2021. The data is divided into two groups, namely in sample data and out sample data with a ratio of 90: 10. In the data processing process, the Python programming language is used. Based on the accuracy test using the MAPE method, it can be concluded that this method provides better forecasting results with a MAPE value of 1.16%.","PeriodicalId":300313,"journal":{"name":"Kubik: Jurnal Publikasi Ilmiah Matematika","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution Based Fuzzy Time Series Markov Chain Models for forecasting Inflation in Bandung\",\"authors\":\"Salsabila Ayu Pratiwi, Dewi Rachmatin, R. Marwati\",\"doi\":\"10.15575/kubik.v7i1.18156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study discusses the application of the Fuzzy Time Series Markov Chain method which was developed by determining the length of the interval using the distribution method. In the fuzzy forecasting method, the determination of the length of the interval is an important thing that will affect the accuracy of the forecasting results. The development of this forecasting model aims to get better forecasting accuracy results. In this study, general inflation data for the city of Bandung is used for the period January 2016 – June 2021. The data is divided into two groups, namely in sample data and out sample data with a ratio of 90: 10. In the data processing process, the Python programming language is used. Based on the accuracy test using the MAPE method, it can be concluded that this method provides better forecasting results with a MAPE value of 1.16%.\",\"PeriodicalId\":300313,\"journal\":{\"name\":\"Kubik: Jurnal Publikasi Ilmiah Matematika\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kubik: Jurnal Publikasi Ilmiah Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15575/kubik.v7i1.18156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kubik: Jurnal Publikasi Ilmiah Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15575/kubik.v7i1.18156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了模糊时间序列马尔可夫链方法的应用,该方法是用分布法确定区间长度而发展起来的。在模糊预测方法中,区间长度的确定是影响预测结果准确性的一个重要问题。该预测模型的开发旨在获得更好的预测精度结果。本研究使用的是2016年1月至2021年6月期间万隆市的一般通胀数据。数据分为两组,即样本内数据和样本外数据,比例为90:10。在数据处理过程中,使用Python编程语言。通过MAPE方法的精度检验,得出MAPE值为1.16%时,该方法的预测效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distribution Based Fuzzy Time Series Markov Chain Models for forecasting Inflation in Bandung
This study discusses the application of the Fuzzy Time Series Markov Chain method which was developed by determining the length of the interval using the distribution method. In the fuzzy forecasting method, the determination of the length of the interval is an important thing that will affect the accuracy of the forecasting results. The development of this forecasting model aims to get better forecasting accuracy results. In this study, general inflation data for the city of Bandung is used for the period January 2016 – June 2021. The data is divided into two groups, namely in sample data and out sample data with a ratio of 90: 10. In the data processing process, the Python programming language is used. Based on the accuracy test using the MAPE method, it can be concluded that this method provides better forecasting results with a MAPE value of 1.16%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信