固定斜杠和浮动斜杠有理数算术

D. Matula
{"title":"固定斜杠和浮动斜杠有理数算术","authors":"D. Matula","doi":"10.1109/ARITH.1975.6156999","DOIUrl":null,"url":null,"abstract":"A finite precision rational number system provides for representation of a collection of rational numbers subject to limitations on numerator and denominator magnitude. In fixed-point and floatingpoint radix number systems only rationals of the form i/βj, where β is the base, can be realized. In contrast, a finite precision rational number system will allow representation of practically all simple fractions encountered in applications. In this preliminary report we first propose two types of finite precision rational number systems which we term fixed-slash and floating-slash systems [2]. We then consider the conversion (rounding) problem, that is, the determination of a number satisfying the numerator and denominator constraints approximating a given non representable real value. We show that the rounding problem is solvable by an efficient procedure, which we term mediant conversion, that derives from the theory of continued fractions.","PeriodicalId":360742,"journal":{"name":"1975 IEEE 3rd Symposium on Computer Arithmetic (ARITH)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1975-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Fixed-slash and floating-slash rational arithmetic\",\"authors\":\"D. Matula\",\"doi\":\"10.1109/ARITH.1975.6156999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A finite precision rational number system provides for representation of a collection of rational numbers subject to limitations on numerator and denominator magnitude. In fixed-point and floatingpoint radix number systems only rationals of the form i/βj, where β is the base, can be realized. In contrast, a finite precision rational number system will allow representation of practically all simple fractions encountered in applications. In this preliminary report we first propose two types of finite precision rational number systems which we term fixed-slash and floating-slash systems [2]. We then consider the conversion (rounding) problem, that is, the determination of a number satisfying the numerator and denominator constraints approximating a given non representable real value. We show that the rounding problem is solvable by an efficient procedure, which we term mediant conversion, that derives from the theory of continued fractions.\",\"PeriodicalId\":360742,\"journal\":{\"name\":\"1975 IEEE 3rd Symposium on Computer Arithmetic (ARITH)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1975-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1975 IEEE 3rd Symposium on Computer Arithmetic (ARITH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1975.6156999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1975 IEEE 3rd Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1975.6156999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

有限精度有理数系统提供了受分子和分母大小限制的有理数集合的表示。在定点和浮点基数系统中,只能实现i/βj形式的有理数,其中β为基数。相反,有限精度有理数系统将允许表示应用中遇到的几乎所有简单分数。在这篇初步报告中,我们首先提出了两种有限精度有理数系统,我们称之为固定斜线系统和浮动斜线系统[2]。然后我们考虑转换(舍入)问题,即确定一个满足分子和分母约束的数近似于给定的不可表示实值。我们证明了舍入问题可以用一个有效的过程来解决,我们称之为中间转换,它来源于连分式理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fixed-slash and floating-slash rational arithmetic
A finite precision rational number system provides for representation of a collection of rational numbers subject to limitations on numerator and denominator magnitude. In fixed-point and floatingpoint radix number systems only rationals of the form i/βj, where β is the base, can be realized. In contrast, a finite precision rational number system will allow representation of practically all simple fractions encountered in applications. In this preliminary report we first propose two types of finite precision rational number systems which we term fixed-slash and floating-slash systems [2]. We then consider the conversion (rounding) problem, that is, the determination of a number satisfying the numerator and denominator constraints approximating a given non representable real value. We show that the rounding problem is solvable by an efficient procedure, which we term mediant conversion, that derives from the theory of continued fractions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信