基于时间序列比对的人类动作识别

Sultan Almotairi, Eraldo Ribeiro
{"title":"基于时间序列比对的人类动作识别","authors":"Sultan Almotairi, Eraldo Ribeiro","doi":"10.1109/CSCI.2014.28","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of recognizing human actions from videos. Human actions recognition is a challenging task in computer vision. We propose a method to solve this problem using Longest Common Sub-Sequence (LCSS) algorithm and Shape Context (SC). Our contributions in this paper are twofold. First, we show the applicability of the SC as a pairwise shape-similarity measurement for generating a sequence that defines a specific motion. Secondly, we demonstrate the usability of LCSS to classify human actions. Experiments were performed on two action datasets to compare the result to the related methods.","PeriodicalId":439385,"journal":{"name":"2014 International Conference on Computational Science and Computational Intelligence","volume":"406 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Human Action Recognition Using Temporal Sequence Alignment\",\"authors\":\"Sultan Almotairi, Eraldo Ribeiro\",\"doi\":\"10.1109/CSCI.2014.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the problem of recognizing human actions from videos. Human actions recognition is a challenging task in computer vision. We propose a method to solve this problem using Longest Common Sub-Sequence (LCSS) algorithm and Shape Context (SC). Our contributions in this paper are twofold. First, we show the applicability of the SC as a pairwise shape-similarity measurement for generating a sequence that defines a specific motion. Secondly, we demonstrate the usability of LCSS to classify human actions. Experiments were performed on two action datasets to compare the result to the related methods.\",\"PeriodicalId\":439385,\"journal\":{\"name\":\"2014 International Conference on Computational Science and Computational Intelligence\",\"volume\":\"406 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Computational Science and Computational Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI.2014.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Computational Science and Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI.2014.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们解决了从视频中识别人类行为的问题。人体动作识别是计算机视觉领域的一个具有挑战性的课题。我们提出了一种利用最长公共子序列(LCSS)算法和形状上下文(SC)来解决这一问题的方法。我们在这篇论文中的贡献是双重的。首先,我们展示了SC作为成对形状相似性度量的适用性,用于生成定义特定运动的序列。其次,我们展示了LCSS对人类行为进行分类的可用性。在两个动作数据集上进行实验,将结果与相关方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human Action Recognition Using Temporal Sequence Alignment
In this paper, we address the problem of recognizing human actions from videos. Human actions recognition is a challenging task in computer vision. We propose a method to solve this problem using Longest Common Sub-Sequence (LCSS) algorithm and Shape Context (SC). Our contributions in this paper are twofold. First, we show the applicability of the SC as a pairwise shape-similarity measurement for generating a sequence that defines a specific motion. Secondly, we demonstrate the usability of LCSS to classify human actions. Experiments were performed on two action datasets to compare the result to the related methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信