基于FA模型预测控制的自主水下航行器跟踪控制

W. Zhou, Daqi Zhu, Xiaotong Yan
{"title":"基于FA模型预测控制的自主水下航行器跟踪控制","authors":"W. Zhou, Daqi Zhu, Xiaotong Yan","doi":"10.1109/ICAICE54393.2021.00091","DOIUrl":null,"url":null,"abstract":"Aiming at the trajectory tracking control of the autonomous underwater vehicle (AUV), a new model predictive control (MPC) method based on the firefly algorithm optimization (FA) is proposed. This article firstly gives the concept of trajectory tracking and model predictive control, and then uses FA-MPC to achieve tracking control. The firefly algorithm is used to solve the optimization problem of minimizing the objective function under the condition of satisfying control amount constraints and control incremental constraints. The simulation experiment results illustrate that FA-MPC can effectively solve the speed jump problem caused by the use of backstepping control, and FA-MPC is stable and feasible in the trajectory tracking problem.","PeriodicalId":388444,"journal":{"name":"2021 2nd International Conference on Artificial Intelligence and Computer Engineering (ICAICE)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Tracking control of Autonomous Underwater Vehicle Based on FA - Model Predictive Control\",\"authors\":\"W. Zhou, Daqi Zhu, Xiaotong Yan\",\"doi\":\"10.1109/ICAICE54393.2021.00091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the trajectory tracking control of the autonomous underwater vehicle (AUV), a new model predictive control (MPC) method based on the firefly algorithm optimization (FA) is proposed. This article firstly gives the concept of trajectory tracking and model predictive control, and then uses FA-MPC to achieve tracking control. The firefly algorithm is used to solve the optimization problem of minimizing the objective function under the condition of satisfying control amount constraints and control incremental constraints. The simulation experiment results illustrate that FA-MPC can effectively solve the speed jump problem caused by the use of backstepping control, and FA-MPC is stable and feasible in the trajectory tracking problem.\",\"PeriodicalId\":388444,\"journal\":{\"name\":\"2021 2nd International Conference on Artificial Intelligence and Computer Engineering (ICAICE)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 2nd International Conference on Artificial Intelligence and Computer Engineering (ICAICE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAICE54393.2021.00091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Conference on Artificial Intelligence and Computer Engineering (ICAICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICE54393.2021.00091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对自主水下航行器的轨迹跟踪控制问题,提出了一种基于萤火虫算法优化(FA)的模型预测控制(MPC)方法。本文首先给出了轨迹跟踪和模型预测控制的概念,然后利用FA-MPC实现跟踪控制。采用萤火虫算法解决了在满足控制量约束和控制增量约束的条件下,目标函数最小化的优化问题。仿真实验结果表明,FA-MPC可以有效地解决由反步控制引起的速度跳跃问题,并且FA-MPC在轨迹跟踪问题上是稳定可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Tracking control of Autonomous Underwater Vehicle Based on FA - Model Predictive Control
Aiming at the trajectory tracking control of the autonomous underwater vehicle (AUV), a new model predictive control (MPC) method based on the firefly algorithm optimization (FA) is proposed. This article firstly gives the concept of trajectory tracking and model predictive control, and then uses FA-MPC to achieve tracking control. The firefly algorithm is used to solve the optimization problem of minimizing the objective function under the condition of satisfying control amount constraints and control incremental constraints. The simulation experiment results illustrate that FA-MPC can effectively solve the speed jump problem caused by the use of backstepping control, and FA-MPC is stable and feasible in the trajectory tracking problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信