基于学习的水库系统分层控制

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS
Pauline Kergus , Simone Formentin , Matteo Giuliani , Andrea Castelletti
{"title":"基于学习的水库系统分层控制","authors":"Pauline Kergus ,&nbsp;Simone Formentin ,&nbsp;Matteo Giuliani ,&nbsp;Andrea Castelletti","doi":"10.1016/j.ifacsc.2022.100185","DOIUrl":null,"url":null,"abstract":"<div><p>The optimal control of a water reservoir system represents a challenging problem, due to uncertain hydrologic inputs and the need to adapt to changing environment and varying control objectives. In this work, we propose a real-time learning-based control strategy based on a hierarchical predictive control architecture. Two control loops are implemented: the inner loop is aimed to make the overall dynamics similar to an assigned linear model through data-driven control design, then the outer economic model-predictive controller compensates for model mismatches, enforces suitable constraints, and boosts the tracking performance. The effectiveness of the proposed approach is illustrated on an accurate simulator of the Hoa Binh reservoir in Vietnam. Results show that the proposed approach outperforms stochastic dynamic programming.</p></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"19 ","pages":"Article 100185"},"PeriodicalIF":1.8000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468601822000025/pdfft?md5=9f03ba76d2ec4ccaa7cda3bec45dd375&pid=1-s2.0-S2468601822000025-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Learning-based hierarchical control of water reservoir systems\",\"authors\":\"Pauline Kergus ,&nbsp;Simone Formentin ,&nbsp;Matteo Giuliani ,&nbsp;Andrea Castelletti\",\"doi\":\"10.1016/j.ifacsc.2022.100185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The optimal control of a water reservoir system represents a challenging problem, due to uncertain hydrologic inputs and the need to adapt to changing environment and varying control objectives. In this work, we propose a real-time learning-based control strategy based on a hierarchical predictive control architecture. Two control loops are implemented: the inner loop is aimed to make the overall dynamics similar to an assigned linear model through data-driven control design, then the outer economic model-predictive controller compensates for model mismatches, enforces suitable constraints, and boosts the tracking performance. The effectiveness of the proposed approach is illustrated on an accurate simulator of the Hoa Binh reservoir in Vietnam. Results show that the proposed approach outperforms stochastic dynamic programming.</p></div>\",\"PeriodicalId\":29926,\"journal\":{\"name\":\"IFAC Journal of Systems and Control\",\"volume\":\"19 \",\"pages\":\"Article 100185\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468601822000025/pdfft?md5=9f03ba76d2ec4ccaa7cda3bec45dd375&pid=1-s2.0-S2468601822000025-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Journal of Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468601822000025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601822000025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

由于水文输入不确定,需要适应不断变化的环境和不同的控制目标,水库系统的最优控制是一个具有挑战性的问题。在这项工作中,我们提出了一种基于分层预测控制体系结构的实时学习控制策略。实现了两个控制回路:内环旨在通过数据驱动控制设计使整体动力学类似于指定的线性模型,然后外部经济模型-预测控制器补偿模型不匹配,实施适当的约束,并提高跟踪性能。该方法的有效性在越南和平水库的精确模拟器上得到了验证。结果表明,该方法优于随机动态规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning-based hierarchical control of water reservoir systems

The optimal control of a water reservoir system represents a challenging problem, due to uncertain hydrologic inputs and the need to adapt to changing environment and varying control objectives. In this work, we propose a real-time learning-based control strategy based on a hierarchical predictive control architecture. Two control loops are implemented: the inner loop is aimed to make the overall dynamics similar to an assigned linear model through data-driven control design, then the outer economic model-predictive controller compensates for model mismatches, enforces suitable constraints, and boosts the tracking performance. The effectiveness of the proposed approach is illustrated on an accurate simulator of the Hoa Binh reservoir in Vietnam. Results show that the proposed approach outperforms stochastic dynamic programming.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信