工业质量检测中的多传感器摄像机

R. Massen
{"title":"工业质量检测中的多传感器摄像机","authors":"R. Massen","doi":"10.1109/AT.1995.535971","DOIUrl":null,"url":null,"abstract":"Industrial surface inspection can greatly be improved if not just greylevel intensity, but also colour and local height can be imaged at once. The multi-sensorial camera produces for every pixel not a scalar attribute, but a complete feature vector with many, preferably uncorrelated components. A typical example is the \"3D&Colour\" line scan camera which generates a feature vector (Intensity, Hue, Saturation, Z=height) for every pixel at resolutions of typically 2048 pixels along the line of scan and with scanning frequencies up to several kHz. The processing of such a vectorial image starts with a LUT-based, trainable pixel classifier who transforms the vectorial image into a stack of binary class label images. This significant data reduction results in only little information loss and leads to further processing based on well-established image region processing techniques.","PeriodicalId":268081,"journal":{"name":"AT'95: Advanced Technologies Intelligent Vision","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multisensorial cameras in industrial quality inspection\",\"authors\":\"R. Massen\",\"doi\":\"10.1109/AT.1995.535971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industrial surface inspection can greatly be improved if not just greylevel intensity, but also colour and local height can be imaged at once. The multi-sensorial camera produces for every pixel not a scalar attribute, but a complete feature vector with many, preferably uncorrelated components. A typical example is the \\\"3D&Colour\\\" line scan camera which generates a feature vector (Intensity, Hue, Saturation, Z=height) for every pixel at resolutions of typically 2048 pixels along the line of scan and with scanning frequencies up to several kHz. The processing of such a vectorial image starts with a LUT-based, trainable pixel classifier who transforms the vectorial image into a stack of binary class label images. This significant data reduction results in only little information loss and leads to further processing based on well-established image region processing techniques.\",\"PeriodicalId\":268081,\"journal\":{\"name\":\"AT'95: Advanced Technologies Intelligent Vision\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AT'95: Advanced Technologies Intelligent Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AT.1995.535971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AT'95: Advanced Technologies Intelligent Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AT.1995.535971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果不仅仅是灰度强度,而且颜色和局部高度都能同时成像,那么工业表面检测可以大大提高。多传感器相机为每个像素产生的不是一个标量属性,而是一个完整的特征向量,其中包含许多最好是不相关的组件。一个典型的例子是“3d & color”线扫描相机,它为每个像素生成一个特征向量(强度,色相,饱和度,Z=高度),沿扫描线的分辨率通常为2048像素,扫描频率高达几kHz。这种矢量图像的处理从基于lut的可训练像素分类器开始,该分类器将矢量图像转换为二进制类标签图像的堆栈。这种显著的数据减少只导致很少的信息损失,并导致基于成熟的图像区域处理技术的进一步处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multisensorial cameras in industrial quality inspection
Industrial surface inspection can greatly be improved if not just greylevel intensity, but also colour and local height can be imaged at once. The multi-sensorial camera produces for every pixel not a scalar attribute, but a complete feature vector with many, preferably uncorrelated components. A typical example is the "3D&Colour" line scan camera which generates a feature vector (Intensity, Hue, Saturation, Z=height) for every pixel at resolutions of typically 2048 pixels along the line of scan and with scanning frequencies up to several kHz. The processing of such a vectorial image starts with a LUT-based, trainable pixel classifier who transforms the vectorial image into a stack of binary class label images. This significant data reduction results in only little information loss and leads to further processing based on well-established image region processing techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信