阵列处理中信号数检测的贝叶斯信息准则

A. Sano, H. Tsuji, K. Nagasawa
{"title":"阵列处理中信号数检测的贝叶斯信息准则","authors":"A. Sano, H. Tsuji, K. Nagasawa","doi":"10.1109/SPECT.1990.205560","DOIUrl":null,"url":null,"abstract":"The generalized singular value decomposition approach is taken in AR spectral estimation in order to mitigate noise effects on the estimated spectrum. A Baysian information theoretic criterion is derived to attain the optimal truncation of smaller generalized singular values and then the separation of signal subspace and noise subspace. The effectiveness of the proposed criterion is investigated in array signal processing in cases of narrowband and broadband sources in comparison with the other AIC and the MDL criteria.<<ETX>>","PeriodicalId":117661,"journal":{"name":"Fifth ASSP Workshop on Spectrum Estimation and Modeling","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bayesian information theoretic criterion for detection of number of signals in array processing\",\"authors\":\"A. Sano, H. Tsuji, K. Nagasawa\",\"doi\":\"10.1109/SPECT.1990.205560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generalized singular value decomposition approach is taken in AR spectral estimation in order to mitigate noise effects on the estimated spectrum. A Baysian information theoretic criterion is derived to attain the optimal truncation of smaller generalized singular values and then the separation of signal subspace and noise subspace. The effectiveness of the proposed criterion is investigated in array signal processing in cases of narrowband and broadband sources in comparison with the other AIC and the MDL criteria.<<ETX>>\",\"PeriodicalId\":117661,\"journal\":{\"name\":\"Fifth ASSP Workshop on Spectrum Estimation and Modeling\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth ASSP Workshop on Spectrum Estimation and Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPECT.1990.205560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth ASSP Workshop on Spectrum Estimation and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPECT.1990.205560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在AR频谱估计中采用广义奇异值分解方法,以减轻噪声对估计频谱的影响。推导出一个贝叶斯信息论准则,对较小的广义奇异值进行最优截断,从而实现信号子空间和噪声子空间的分离。通过与其他AIC准则和MDL准则的比较,研究了该准则在窄带和宽带阵列信号处理中的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian information theoretic criterion for detection of number of signals in array processing
The generalized singular value decomposition approach is taken in AR spectral estimation in order to mitigate noise effects on the estimated spectrum. A Baysian information theoretic criterion is derived to attain the optimal truncation of smaller generalized singular values and then the separation of signal subspace and noise subspace. The effectiveness of the proposed criterion is investigated in array signal processing in cases of narrowband and broadband sources in comparison with the other AIC and the MDL criteria.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信