城市区域鲁棒单目里程计的概率流子空间专家

Christian Herdtweck, Cristóbal Curio
{"title":"城市区域鲁棒单目里程计的概率流子空间专家","authors":"Christian Herdtweck, Cristóbal Curio","doi":"10.1109/IVS.2012.6232238","DOIUrl":null,"url":null,"abstract":"Visual odometry has been promoted as a fundamental component for intelligent vehicles. Relying solely on monocular image cues would be desirable. Nevertheless, this is a challenge especially in dynamically varying urban areas due to scale ambiguities, independent motions, and measurement noise. We propose to use probabilistic learning with auxiliar depth cues. Specifically, we developed an expert model that specializes monocular egomotion estimation units on typical scene structures, i.e. statistical variations of scene depth layouts. The framework adaptively selects the best fitting expert. For on-line estimation of egomotion, we adopted a probabilistic subspace flow estimation method. Learning in our framework consists of two components: 1) Partitioning of datasets of video and ground truth odometry data based on unsupervised clustering of dense stereo depth profiles and 2) training a cascade of subspace flow expert models. A probabilistic quality measure from the estimates of the experts provides a selection rule overall leading to improvements of egomotion estimation for long test sequences.","PeriodicalId":402389,"journal":{"name":"2012 IEEE Intelligent Vehicles Symposium","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Experts of probabilistic flow subspaces for robust monocular odometry in urban areas\",\"authors\":\"Christian Herdtweck, Cristóbal Curio\",\"doi\":\"10.1109/IVS.2012.6232238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual odometry has been promoted as a fundamental component for intelligent vehicles. Relying solely on monocular image cues would be desirable. Nevertheless, this is a challenge especially in dynamically varying urban areas due to scale ambiguities, independent motions, and measurement noise. We propose to use probabilistic learning with auxiliar depth cues. Specifically, we developed an expert model that specializes monocular egomotion estimation units on typical scene structures, i.e. statistical variations of scene depth layouts. The framework adaptively selects the best fitting expert. For on-line estimation of egomotion, we adopted a probabilistic subspace flow estimation method. Learning in our framework consists of two components: 1) Partitioning of datasets of video and ground truth odometry data based on unsupervised clustering of dense stereo depth profiles and 2) training a cascade of subspace flow expert models. A probabilistic quality measure from the estimates of the experts provides a selection rule overall leading to improvements of egomotion estimation for long test sequences.\",\"PeriodicalId\":402389,\"journal\":{\"name\":\"2012 IEEE Intelligent Vehicles Symposium\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Intelligent Vehicles Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2012.6232238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2012.6232238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

视觉里程计已被推广为智能汽车的基本组成部分。仅仅依靠单目图像线索是可取的。然而,这是一个挑战,特别是在动态变化的城市地区,由于尺度模糊,独立运动和测量噪声。我们建议使用带有辅助深度线索的概率学习。具体来说,我们开发了一个专家模型,专门针对典型场景结构的单目自运动估计单元,即场景深度布局的统计变化。该框架自适应选择最佳拟合专家。对于自我运动的在线估计,我们采用了一种概率子空间流估计方法。在我们的框架中,学习由两个部分组成:1)基于密集立体深度轮廓的无监督聚类对视频和地面真值里程数据集进行划分;2)训练一系列子空间流专家模型。从专家估计的概率质量度量提供了一个选择规则,总体上导致对长测试序列的自我运动估计的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experts of probabilistic flow subspaces for robust monocular odometry in urban areas
Visual odometry has been promoted as a fundamental component for intelligent vehicles. Relying solely on monocular image cues would be desirable. Nevertheless, this is a challenge especially in dynamically varying urban areas due to scale ambiguities, independent motions, and measurement noise. We propose to use probabilistic learning with auxiliar depth cues. Specifically, we developed an expert model that specializes monocular egomotion estimation units on typical scene structures, i.e. statistical variations of scene depth layouts. The framework adaptively selects the best fitting expert. For on-line estimation of egomotion, we adopted a probabilistic subspace flow estimation method. Learning in our framework consists of two components: 1) Partitioning of datasets of video and ground truth odometry data based on unsupervised clustering of dense stereo depth profiles and 2) training a cascade of subspace flow expert models. A probabilistic quality measure from the estimates of the experts provides a selection rule overall leading to improvements of egomotion estimation for long test sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信