潜热蓄热组合式姜混合式太阳能干燥机的设计、施工及性能评价

Lanre Abel Agbetiloye, F. Anafi, N. O. Omisanya
{"title":"潜热蓄热组合式姜混合式太阳能干燥机的设计、施工及性能评价","authors":"Lanre Abel Agbetiloye, F. Anafi, N. O. Omisanya","doi":"10.46792/fuoyejet.v7i2.759","DOIUrl":null,"url":null,"abstract":"This study is concerned with the design, simulation, construction and performance evaluation of a ginger solar dryer integrated with latent heat storage. It was done to address the problem of complete non-availability of conserved energy to precede the drying process for some times immediately after the sunshine hours have elapsed; thereby reducing the wide gap between the solar energy demand and supply.  The ginger solar dryer was tested to dry 6 kg of sliced ginger rhizomes. The dimensions of the dryer were calculated by design to be as follows: 1.5638 m, 1.6302 m2 and 1.155 m for collector length, collector area and chimney height respectively. An experiment was conducted to blend Aluminium powder with shea butter at elevated mass fraction of (1 – 5) %wt of Aluminium powder. The third level composition (3%/97%) was considered the most appropriate due to its moderate thermal conductivity of 0.053762 W/mK and highest latent heat of fusion - 164.53 KJ/kg. The ginger solar dryer was tested with ginger slices of (3 – 5) mm average thickness from 9:00 am to 11:00 pm of 11th June, 2019. The average drying rate, collector efficiency and drying efficiency for the period were kg/s, 77% and 30% respectively","PeriodicalId":323504,"journal":{"name":"FUOYE Journal of Engineering and Technology","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design, Construction and Performance Evaluation of Ginger Mixed Mode Solar Dryer Integrated with Latent Heat Storage\",\"authors\":\"Lanre Abel Agbetiloye, F. Anafi, N. O. Omisanya\",\"doi\":\"10.46792/fuoyejet.v7i2.759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study is concerned with the design, simulation, construction and performance evaluation of a ginger solar dryer integrated with latent heat storage. It was done to address the problem of complete non-availability of conserved energy to precede the drying process for some times immediately after the sunshine hours have elapsed; thereby reducing the wide gap between the solar energy demand and supply.  The ginger solar dryer was tested to dry 6 kg of sliced ginger rhizomes. The dimensions of the dryer were calculated by design to be as follows: 1.5638 m, 1.6302 m2 and 1.155 m for collector length, collector area and chimney height respectively. An experiment was conducted to blend Aluminium powder with shea butter at elevated mass fraction of (1 – 5) %wt of Aluminium powder. The third level composition (3%/97%) was considered the most appropriate due to its moderate thermal conductivity of 0.053762 W/mK and highest latent heat of fusion - 164.53 KJ/kg. The ginger solar dryer was tested with ginger slices of (3 – 5) mm average thickness from 9:00 am to 11:00 pm of 11th June, 2019. The average drying rate, collector efficiency and drying efficiency for the period were kg/s, 77% and 30% respectively\",\"PeriodicalId\":323504,\"journal\":{\"name\":\"FUOYE Journal of Engineering and Technology\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FUOYE Journal of Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46792/fuoyejet.v7i2.759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUOYE Journal of Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46792/fuoyejet.v7i2.759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了一种集潜热蓄热于一体的生姜太阳能干燥机的设计、仿真、构造及性能评价。这样做是为了解决在日照时间过去后的一段时间内,在干燥过程之前完全无法获得保存的能量的问题;从而缩小了太阳能需求和供应之间的巨大差距。对生姜太阳能干燥机进行了试验,可干燥6公斤姜片根茎。经设计计算,烘干机尺寸为:集热管长度1.5638 m,集热管面积1.6302 m2,烟囱高度1.155 m。在铝粉质量分数为(1 ~ 5)%wt的条件下,对铝粉与乳木果油进行了混合试验。第三级成分(3%/97%)被认为是最合适的,因为它的导热系数适中,为0.053762 W/mK,熔合潜热最高,为164.53 KJ/kg。于2019年6月11日上午9时至晚上11时,用平均厚度为(3 ~ 5)mm的生姜片对生姜太阳能干燥机进行了测试。期间平均干燥速率为kg/s,集热器效率为77%,干燥效率为30%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design, Construction and Performance Evaluation of Ginger Mixed Mode Solar Dryer Integrated with Latent Heat Storage
This study is concerned with the design, simulation, construction and performance evaluation of a ginger solar dryer integrated with latent heat storage. It was done to address the problem of complete non-availability of conserved energy to precede the drying process for some times immediately after the sunshine hours have elapsed; thereby reducing the wide gap between the solar energy demand and supply.  The ginger solar dryer was tested to dry 6 kg of sliced ginger rhizomes. The dimensions of the dryer were calculated by design to be as follows: 1.5638 m, 1.6302 m2 and 1.155 m for collector length, collector area and chimney height respectively. An experiment was conducted to blend Aluminium powder with shea butter at elevated mass fraction of (1 – 5) %wt of Aluminium powder. The third level composition (3%/97%) was considered the most appropriate due to its moderate thermal conductivity of 0.053762 W/mK and highest latent heat of fusion - 164.53 KJ/kg. The ginger solar dryer was tested with ginger slices of (3 – 5) mm average thickness from 9:00 am to 11:00 pm of 11th June, 2019. The average drying rate, collector efficiency and drying efficiency for the period were kg/s, 77% and 30% respectively
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信