基于确定性学习和状态观察的动态模式快速识别

Cong Wang, Chenghong Wang, Su Song
{"title":"基于确定性学习和状态观察的动态模式快速识别","authors":"Cong Wang, Chenghong Wang, Su Song","doi":"10.1109/ISIC.2007.4450857","DOIUrl":null,"url":null,"abstract":"A \"deterministic learning\" theory was recently proposed for identification, representation and rapid recognition of multi-variable dynamical patterns with full-state measurements. In this paper, it will be shown that for a class of single-variable dynamical patterns with only output measurements, identification, representation and rapid recognition can be achieved via the deterministic learning theory and state observation techniques. Firstly, the system dynamics of a set of training single-variable dynamical pattern can be locally-accurately identified through high-gain observation and deterministic learning. Secondly, a single-variable dynamical pattern is represented in a time-invariant and spatially-distributed manner via deterministic learning. This representation is a kind of static, graph-based representation. A set of nonlinear observers are then constructed as dynamic representatives of the training dynamical patterns. Thirdly, rapid recognition of a test single-variable dynamical pattern can be implemented when non-high-gain state observation is achieved according to a kind of internal and dynamical matching on system dynamics. The observation errors can be taken as the measure of similarity between the test and training dynamical patterns.","PeriodicalId":184867,"journal":{"name":"2007 IEEE 22nd International Symposium on Intelligent Control","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rapid Recognition of Dynamical Patterns via Deterministic Learning and State Observation\",\"authors\":\"Cong Wang, Chenghong Wang, Su Song\",\"doi\":\"10.1109/ISIC.2007.4450857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A \\\"deterministic learning\\\" theory was recently proposed for identification, representation and rapid recognition of multi-variable dynamical patterns with full-state measurements. In this paper, it will be shown that for a class of single-variable dynamical patterns with only output measurements, identification, representation and rapid recognition can be achieved via the deterministic learning theory and state observation techniques. Firstly, the system dynamics of a set of training single-variable dynamical pattern can be locally-accurately identified through high-gain observation and deterministic learning. Secondly, a single-variable dynamical pattern is represented in a time-invariant and spatially-distributed manner via deterministic learning. This representation is a kind of static, graph-based representation. A set of nonlinear observers are then constructed as dynamic representatives of the training dynamical patterns. Thirdly, rapid recognition of a test single-variable dynamical pattern can be implemented when non-high-gain state observation is achieved according to a kind of internal and dynamical matching on system dynamics. The observation errors can be taken as the measure of similarity between the test and training dynamical patterns.\",\"PeriodicalId\":184867,\"journal\":{\"name\":\"2007 IEEE 22nd International Symposium on Intelligent Control\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 22nd International Symposium on Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2007.4450857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 22nd International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2007.4450857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近提出了一种“确定性学习”理论,用于识别、表示和快速识别具有全状态测量的多变量动态模式。本文将证明,对于一类只有输出测量的单变量动态模式,可以通过确定性学习理论和状态观察技术实现识别、表示和快速识别。首先,通过高增益观察和确定性学习,可以局部准确识别一组训练单变量动态模式的系统动态;其次,通过确定性学习将单变量动态模式以时不变和空间分布的方式表示。这种表示是一种静态的、基于图形的表示。然后构造一组非线性观测器作为训练动态模式的动态表示。第三,通过对系统动力学的一种内部和动态匹配,实现非高增益状态观测,实现对测试单变量动态模式的快速识别。观测误差可以作为测试和训练动态模式相似度的度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid Recognition of Dynamical Patterns via Deterministic Learning and State Observation
A "deterministic learning" theory was recently proposed for identification, representation and rapid recognition of multi-variable dynamical patterns with full-state measurements. In this paper, it will be shown that for a class of single-variable dynamical patterns with only output measurements, identification, representation and rapid recognition can be achieved via the deterministic learning theory and state observation techniques. Firstly, the system dynamics of a set of training single-variable dynamical pattern can be locally-accurately identified through high-gain observation and deterministic learning. Secondly, a single-variable dynamical pattern is represented in a time-invariant and spatially-distributed manner via deterministic learning. This representation is a kind of static, graph-based representation. A set of nonlinear observers are then constructed as dynamic representatives of the training dynamical patterns. Thirdly, rapid recognition of a test single-variable dynamical pattern can be implemented when non-high-gain state observation is achieved according to a kind of internal and dynamical matching on system dynamics. The observation errors can be taken as the measure of similarity between the test and training dynamical patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信