基于词典利他偏好的两人议价

D. Glycopantis
{"title":"基于词典利他偏好的两人议价","authors":"D. Glycopantis","doi":"10.2139/ssrn.3464196","DOIUrl":null,"url":null,"abstract":"In bargaining theory a usual assumption is either that of von Neumann-Morgenstern utility functions or that of continuous preferences. Recently we considered in Glycopantis a bargaining model which breaks away from this traditional treatment by employing lexicographic preferences of a antagonistic type. In the present note we consider a bargaining model with lexicographic but altruistic preferences for the two players. We show that the Rubinstein et al., definition can again be used to obtain a Nash solution. This is of a different type from that of the antagonistic model. We also look briefly again at the alternating offers approach.","PeriodicalId":423216,"journal":{"name":"Game Theory & Bargaining Theory eJournal","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-person Bargaining with Lexicographic Altruistic Preferences\",\"authors\":\"D. Glycopantis\",\"doi\":\"10.2139/ssrn.3464196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In bargaining theory a usual assumption is either that of von Neumann-Morgenstern utility functions or that of continuous preferences. Recently we considered in Glycopantis a bargaining model which breaks away from this traditional treatment by employing lexicographic preferences of a antagonistic type. In the present note we consider a bargaining model with lexicographic but altruistic preferences for the two players. We show that the Rubinstein et al., definition can again be used to obtain a Nash solution. This is of a different type from that of the antagonistic model. We also look briefly again at the alternating offers approach.\",\"PeriodicalId\":423216,\"journal\":{\"name\":\"Game Theory & Bargaining Theory eJournal\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Game Theory & Bargaining Theory eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3464196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Game Theory & Bargaining Theory eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3464196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在议价理论中,通常的假设要么是冯·诺伊曼-摩根斯坦效用函数的假设,要么是连续偏好的假设。最近,我们在Glycopantis中考虑了一种讨价还价模型,该模型通过采用对抗类型的词典偏好来打破这种传统治疗。在本笔记中,我们考虑一个讨价还价的模型与词典,但利他偏好的两个玩家。我们证明Rubinstein等人的定义可以再次用于获得纳什解。这是一种不同于对抗模型的类型。我们也简要地再看一下交替报价的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-person Bargaining with Lexicographic Altruistic Preferences
In bargaining theory a usual assumption is either that of von Neumann-Morgenstern utility functions or that of continuous preferences. Recently we considered in Glycopantis a bargaining model which breaks away from this traditional treatment by employing lexicographic preferences of a antagonistic type. In the present note we consider a bargaining model with lexicographic but altruistic preferences for the two players. We show that the Rubinstein et al., definition can again be used to obtain a Nash solution. This is of a different type from that of the antagonistic model. We also look briefly again at the alternating offers approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信