Ю. В. Солоненко, М. Р. Говоруха
{"title":"Шляхи подолання асиметричної інформації під час побудови точних моделей пандемій","authors":"Ю. В. Солоненко, М. Р. Говоруха","doi":"10.31558/2307-2318.2021.1.10","DOIUrl":null,"url":null,"abstract":"The article substantiates the objective need to improve the existing models for predicting pandemic models, identifies the main factors for solving asymmetry problems. A relationship was revealed between the level of concern, the number of Internet requests on the Internet and non-compliance with quarantine restrictions. The authors have proven the danger of uncoordinated and unhurried actions on the historical example of a pandemic called \"Spanish flu\". For a general understanding of the topic, the action of the mechanism of artificial neural networks is schematically reflected, a model for predicting the SIR epidemic is built. The practical significance of the work lies in the fact that more accurate models for predicting the course of pandemics can save millions of lives and provide stable systems for the economic, social and political life of the population. Overcoming the incompleteness and inaccuracies of information will allow the leaders of states to avoid mistakes when making important decisions. Further research in the chosen topic will make it possible to obtain accurate data on the course of epidemics, and in the future, will help to overcome the problem of information asymmetry.","PeriodicalId":278056,"journal":{"name":"Економіка і організація управління","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Економіка і організація управління","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31558/2307-2318.2021.1.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文章论证了改进现有流行病预测模型的客观需要,指出了解决不对称问题的主要因素。调查发现,关注程度、互联网上的互联网请求数量与不遵守隔离限制之间存在关系。作者以历史上的“西班牙流感”大流行为例,证明了不协调和不匆忙行动的危险。为了对课题有一个大致的了解,本文概要地反映了人工神经网络的作用机理,建立了SIR疫情预测模型。这项工作的实际意义在于,预测流行病进程的更准确模型可以挽救数百万人的生命,并为人口的经济、社会和政治生活提供稳定的系统。克服信息的不完整性和不准确性将使国家领导人在做出重要决策时避免错误。对所选专题的进一步研究将使人们有可能获得关于流行病发展过程的准确数据,并在将来有助于克服信息不对称的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Шляхи подолання асиметричної інформації під час побудови точних моделей пандемій
The article substantiates the objective need to improve the existing models for predicting pandemic models, identifies the main factors for solving asymmetry problems. A relationship was revealed between the level of concern, the number of Internet requests on the Internet and non-compliance with quarantine restrictions. The authors have proven the danger of uncoordinated and unhurried actions on the historical example of a pandemic called "Spanish flu". For a general understanding of the topic, the action of the mechanism of artificial neural networks is schematically reflected, a model for predicting the SIR epidemic is built. The practical significance of the work lies in the fact that more accurate models for predicting the course of pandemics can save millions of lives and provide stable systems for the economic, social and political life of the population. Overcoming the incompleteness and inaccuracies of information will allow the leaders of states to avoid mistakes when making important decisions. Further research in the chosen topic will make it possible to obtain accurate data on the course of epidemics, and in the future, will help to overcome the problem of information asymmetry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信