数字电路演化的可扩展性问题,演化与高效设计

Vesselin K. Vassilev, J. Miller
{"title":"数字电路演化的可扩展性问题,演化与高效设计","authors":"Vesselin K. Vassilev, J. Miller","doi":"10.1109/EH.2000.869342","DOIUrl":null,"url":null,"abstract":"A major problem in the evolutionary design of combinational circuits is the problem of scale. This refers to the design of electronic circuits in which the number of gates required to implement the optimal circuit is too high to search the space of all designs in reasonable time, even by evolution. The reason is twofold: firstly, the size of the search space becomes enormous as the number of gates required to implement the circuit is increased, and secondly, the time required to calculate the fitness of a circuit grows as the size of the truth table of the circuit. This paper studies the evolutionary design of combinational circuits, particularly the three-bit multiplier circuit, in which the basic building blocks are small sub-circuits, modules inferred from other evolved designs. The structure of the resulting fitness landscapes is studied and it is shown that in general the principles of evolving digital circuits are scalable. Thus to evolve digital circuits using modules is faster, since the building blocks of the circuit are sub-circuits rather than two-input gates. This can also be a disadvantage, since the number of gates of the evolved designs grows as the size of the modules used.","PeriodicalId":432338,"journal":{"name":"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"119","resultStr":"{\"title\":\"Scalability problems of digital circuit evolution evolvability and efficient designs\",\"authors\":\"Vesselin K. Vassilev, J. Miller\",\"doi\":\"10.1109/EH.2000.869342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A major problem in the evolutionary design of combinational circuits is the problem of scale. This refers to the design of electronic circuits in which the number of gates required to implement the optimal circuit is too high to search the space of all designs in reasonable time, even by evolution. The reason is twofold: firstly, the size of the search space becomes enormous as the number of gates required to implement the circuit is increased, and secondly, the time required to calculate the fitness of a circuit grows as the size of the truth table of the circuit. This paper studies the evolutionary design of combinational circuits, particularly the three-bit multiplier circuit, in which the basic building blocks are small sub-circuits, modules inferred from other evolved designs. The structure of the resulting fitness landscapes is studied and it is shown that in general the principles of evolving digital circuits are scalable. Thus to evolve digital circuits using modules is faster, since the building blocks of the circuit are sub-circuits rather than two-input gates. This can also be a disadvantage, since the number of gates of the evolved designs grows as the size of the modules used.\",\"PeriodicalId\":432338,\"journal\":{\"name\":\"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"119\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EH.2000.869342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EH.2000.869342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 119

摘要

组合电路进化设计中的一个主要问题是规模问题。这是指在电子电路的设计中,实现最优电路所需的门数太高,无法在合理的时间内搜索所有设计的空间,即使是通过进化。其原因有两个:首先,随着实现电路所需门数的增加,搜索空间的大小变得巨大;其次,随着电路真值表的大小,计算电路适应度所需的时间也在增加。本文研究了组合电路的进化设计,特别是三比特乘法器电路,其基本构建模块是小的子电路,从其他进化设计中推断出来的模块。研究结果表明,总体而言,数字电路进化的原理是可扩展的。因此,使用模块来发展数字电路是更快的,因为电路的构建模块是子电路而不是双输入门。这也可能是一个缺点,因为随着所使用模块的大小,进化设计的门的数量也会增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalability problems of digital circuit evolution evolvability and efficient designs
A major problem in the evolutionary design of combinational circuits is the problem of scale. This refers to the design of electronic circuits in which the number of gates required to implement the optimal circuit is too high to search the space of all designs in reasonable time, even by evolution. The reason is twofold: firstly, the size of the search space becomes enormous as the number of gates required to implement the circuit is increased, and secondly, the time required to calculate the fitness of a circuit grows as the size of the truth table of the circuit. This paper studies the evolutionary design of combinational circuits, particularly the three-bit multiplier circuit, in which the basic building blocks are small sub-circuits, modules inferred from other evolved designs. The structure of the resulting fitness landscapes is studied and it is shown that in general the principles of evolving digital circuits are scalable. Thus to evolve digital circuits using modules is faster, since the building blocks of the circuit are sub-circuits rather than two-input gates. This can also be a disadvantage, since the number of gates of the evolved designs grows as the size of the modules used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信