一种新的流形学习算法预测蛋白质的四级结构

Tong Wang, Jian Wang, Lixiu Yao
{"title":"一种新的流形学习算法预测蛋白质的四级结构","authors":"Tong Wang, Jian Wang, Lixiu Yao","doi":"10.1109/ISA.2011.5873419","DOIUrl":null,"url":null,"abstract":"With the explosion of protein sequences generated in the Post-Genomic Age, it is urgent to develop an automated method to predict protein quaternary structure. To explore this problem, we adopted an approach based on a sequence encoding descriptor by fusing PseAA (Pseudo Amino Acid) and DC (Dipeptide Composition) representing a protein sample. Here, a completely different approach, manifold learning algorithm MVP (Maximum variance projection) is introduced to extract the key features from the high-dimensional feature space. The dimension-reduced descriptor vector thus obtained is a compact representation of the original high dimensional vector. Our jackknife test results indicate that it is very promising to use the dimensionality reduction approaches to cope with complicated problems in biological systems, such as predicting the quaternary structure of proteins.","PeriodicalId":128163,"journal":{"name":"2011 3rd International Workshop on Intelligent Systems and Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Protein Quaternary Structure by a Novel Manifold Learning Algorithm\",\"authors\":\"Tong Wang, Jian Wang, Lixiu Yao\",\"doi\":\"10.1109/ISA.2011.5873419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the explosion of protein sequences generated in the Post-Genomic Age, it is urgent to develop an automated method to predict protein quaternary structure. To explore this problem, we adopted an approach based on a sequence encoding descriptor by fusing PseAA (Pseudo Amino Acid) and DC (Dipeptide Composition) representing a protein sample. Here, a completely different approach, manifold learning algorithm MVP (Maximum variance projection) is introduced to extract the key features from the high-dimensional feature space. The dimension-reduced descriptor vector thus obtained is a compact representation of the original high dimensional vector. Our jackknife test results indicate that it is very promising to use the dimensionality reduction approaches to cope with complicated problems in biological systems, such as predicting the quaternary structure of proteins.\",\"PeriodicalId\":128163,\"journal\":{\"name\":\"2011 3rd International Workshop on Intelligent Systems and Applications\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 3rd International Workshop on Intelligent Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISA.2011.5873419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 3rd International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISA.2011.5873419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着后基因组时代蛋白质序列的爆炸式增长,迫切需要开发一种预测蛋白质四级结构的自动化方法。为了探索这一问题,我们采用了一种基于序列编码描述符的方法,将代表蛋白质样本的伪氨基酸(Pseudo Amino Acid)和二肽组成(Dipeptide Composition)融合在一起。本文采用一种完全不同的方法,即流形学习算法MVP (Maximum variance projection,最大方差投影)从高维特征空间中提取关键特征。由此得到的降维描述子向量是原始高维向量的压缩表示。我们的折刀测试结果表明,降维方法在处理复杂的生物系统问题,如预测蛋白质的四级结构方面是非常有前景的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of Protein Quaternary Structure by a Novel Manifold Learning Algorithm
With the explosion of protein sequences generated in the Post-Genomic Age, it is urgent to develop an automated method to predict protein quaternary structure. To explore this problem, we adopted an approach based on a sequence encoding descriptor by fusing PseAA (Pseudo Amino Acid) and DC (Dipeptide Composition) representing a protein sample. Here, a completely different approach, manifold learning algorithm MVP (Maximum variance projection) is introduced to extract the key features from the high-dimensional feature space. The dimension-reduced descriptor vector thus obtained is a compact representation of the original high dimensional vector. Our jackknife test results indicate that it is very promising to use the dimensionality reduction approaches to cope with complicated problems in biological systems, such as predicting the quaternary structure of proteins.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信