GaN微电子的热性能和可靠性:亚微米空间和纳秒时间分辨率热成像

Martin Kuball, J. Pomeroy, R. Simms, G. Riedel, H. Ji, A. Sarua, M. Uren, T. Martin
{"title":"GaN微电子的热性能和可靠性:亚微米空间和纳秒时间分辨率热成像","authors":"Martin Kuball, J. Pomeroy, R. Simms, G. Riedel, H. Ji, A. Sarua, M. Uren, T. Martin","doi":"10.1109/CSICS07.2007.32","DOIUrl":null,"url":null,"abstract":"We review our latest developments in the field of Raman thermography and its application to GaN microelectronics. Device self-heating, the temperature rise in a device generated by electrical power dissipation, plays an important role for device performance and reliability, however, is difficult to assess as it occurs on sub-micrometer length scales in most devices, not observable using traditional thermography techniques. The new technique of Raman thermography enables to gain unprecedented insight into device self-heating with sub-micron spatial and with nanosecond time resolution. Thermal resistance of GaN electronic devices on different substrates and with different layouts are compared, interface thermal resistance between the GaN and the substrate was determined. Temperature measurements in the device plane and three dimensionally from the device into the substrate are discussed. Temperature in devices operated in pulsed mode as function of time, dependent on duty cycle and pulse length was studied. A comparison to temperature measurements performed using electrical methods illustrates that care must be taken when identifying junction temperatures using electrical methods.","PeriodicalId":370697,"journal":{"name":"2007 IEEE Compound Semiconductor Integrated Circuits Symposium","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Thermal Properties and Reliability of GaN Microelectronics: Sub-Micron Spatial and Nanosecond Time Resolution Thermography\",\"authors\":\"Martin Kuball, J. Pomeroy, R. Simms, G. Riedel, H. Ji, A. Sarua, M. Uren, T. Martin\",\"doi\":\"10.1109/CSICS07.2007.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We review our latest developments in the field of Raman thermography and its application to GaN microelectronics. Device self-heating, the temperature rise in a device generated by electrical power dissipation, plays an important role for device performance and reliability, however, is difficult to assess as it occurs on sub-micrometer length scales in most devices, not observable using traditional thermography techniques. The new technique of Raman thermography enables to gain unprecedented insight into device self-heating with sub-micron spatial and with nanosecond time resolution. Thermal resistance of GaN electronic devices on different substrates and with different layouts are compared, interface thermal resistance between the GaN and the substrate was determined. Temperature measurements in the device plane and three dimensionally from the device into the substrate are discussed. Temperature in devices operated in pulsed mode as function of time, dependent on duty cycle and pulse length was studied. A comparison to temperature measurements performed using electrical methods illustrates that care must be taken when identifying junction temperatures using electrical methods.\",\"PeriodicalId\":370697,\"journal\":{\"name\":\"2007 IEEE Compound Semiconductor Integrated Circuits Symposium\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Compound Semiconductor Integrated Circuits Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSICS07.2007.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Compound Semiconductor Integrated Circuits Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS07.2007.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

综述了喇曼热成像技术的最新进展及其在GaN微电子学中的应用。器件自热,即器件中由电力耗散产生的温升,对器件性能和可靠性起着重要作用,然而,由于它发生在大多数器件的亚微米长度尺度上,难以评估,使用传统的热成像技术无法观察到。拉曼热成像新技术使我们能够前所未有地深入了解亚微米空间和纳秒时间分辨率的器件自热。比较了不同衬底和不同布局下GaN电子器件的热阻,确定了GaN与衬底之间的界面热阻。讨论了器件平面和从器件到衬底的三维温度测量。研究了工作在脉冲模式下的器件温度随占空比和脉冲长度随时间的变化规律。与使用电学方法进行的温度测量的比较表明,在使用电学方法确定结温时必须小心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal Properties and Reliability of GaN Microelectronics: Sub-Micron Spatial and Nanosecond Time Resolution Thermography
We review our latest developments in the field of Raman thermography and its application to GaN microelectronics. Device self-heating, the temperature rise in a device generated by electrical power dissipation, plays an important role for device performance and reliability, however, is difficult to assess as it occurs on sub-micrometer length scales in most devices, not observable using traditional thermography techniques. The new technique of Raman thermography enables to gain unprecedented insight into device self-heating with sub-micron spatial and with nanosecond time resolution. Thermal resistance of GaN electronic devices on different substrates and with different layouts are compared, interface thermal resistance between the GaN and the substrate was determined. Temperature measurements in the device plane and three dimensionally from the device into the substrate are discussed. Temperature in devices operated in pulsed mode as function of time, dependent on duty cycle and pulse length was studied. A comparison to temperature measurements performed using electrical methods illustrates that care must be taken when identifying junction temperatures using electrical methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信