{"title":"一种新的统计复制混响室的随机波模型","authors":"Shen Lin, Z. Peng","doi":"10.1109/EPEPS.2017.8329763","DOIUrl":null,"url":null,"abstract":"This paper presents a novel physics-oriented statistical representation for complex multipath environments, and develops a hybrid deterministic and stochastic formulation incorporating component-specific characteristics. The advancements lead to a stochastic wave model statistically replicating mode-stirred reverberation chambers, and establish an imperative design-under-chaos capability for electronic devices and systems. The research work is evaluated and validated through representative experiments.","PeriodicalId":397179,"journal":{"name":"2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A novel stochastic wave model statistically replicating reverberation chambers\",\"authors\":\"Shen Lin, Z. Peng\",\"doi\":\"10.1109/EPEPS.2017.8329763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel physics-oriented statistical representation for complex multipath environments, and develops a hybrid deterministic and stochastic formulation incorporating component-specific characteristics. The advancements lead to a stochastic wave model statistically replicating mode-stirred reverberation chambers, and establish an imperative design-under-chaos capability for electronic devices and systems. The research work is evaluated and validated through representative experiments.\",\"PeriodicalId\":397179,\"journal\":{\"name\":\"2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPS.2017.8329763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2017.8329763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel stochastic wave model statistically replicating reverberation chambers
This paper presents a novel physics-oriented statistical representation for complex multipath environments, and develops a hybrid deterministic and stochastic formulation incorporating component-specific characteristics. The advancements lead to a stochastic wave model statistically replicating mode-stirred reverberation chambers, and establish an imperative design-under-chaos capability for electronic devices and systems. The research work is evaluated and validated through representative experiments.