X. Chen, S. Samavedam, V. Narayanan, K. Stein, C. Hobbs, C. Baiocco, W. Li, D. Jaeger, M. Zaleski, H.S. Yang, N. Kim, Y. Lee, D. Zhang, L. Kang, J. Chen, H. Zhuang, A. Sheikh, J. Wallner, M. Aquilino, J. Han, Z. Jin, J. Li, G. Massey, S. Kalpat, R. Jha, N. Moumen, R. Mo, S. Kirshnan, X. Wang, M. Chudzik, M. Chowdhury, D. Nair, C. Reddy, Y. Teh, C. Kothandaraman, D. Coolbaugh, S. Pandey, D. Tekleab, A. Thean, M. Sherony, C. Lage, J. Sudijono, R. Lindsay, J. Ku, M. Khare, A. Steegen
{"title":"具有成本效益的32nm高k /金属栅极CMOS技术,适用于单金属/栅极优先工艺的低功耗应用","authors":"X. Chen, S. Samavedam, V. Narayanan, K. Stein, C. Hobbs, C. Baiocco, W. Li, D. Jaeger, M. Zaleski, H.S. Yang, N. Kim, Y. Lee, D. Zhang, L. Kang, J. Chen, H. Zhuang, A. Sheikh, J. Wallner, M. Aquilino, J. Han, Z. Jin, J. Li, G. Massey, S. Kalpat, R. Jha, N. Moumen, R. Mo, S. Kirshnan, X. Wang, M. Chudzik, M. Chowdhury, D. Nair, C. Reddy, Y. Teh, C. Kothandaraman, D. Coolbaugh, S. Pandey, D. Tekleab, A. Thean, M. Sherony, C. Lage, J. Sudijono, R. Lindsay, J. Ku, M. Khare, A. Steegen","doi":"10.1109/VLSIT.2008.4588573","DOIUrl":null,"url":null,"abstract":"For the first time, we have demonstrated a 32 nm high-k/metal gate (HK-MG) low power CMOS platform technology with low standby leakage transistors and functional high-density SRAM with a cell size of 0.157 mum2. Record NMOS/PMOS drive currents of 1000/575 muA/mum, respectively, have been achieved at 1 nA/mum off-current and 1.1 V Vdd with a low cost process. With this high performance transistor, Vdd can be further scaled to 1.0 V for active power reduction. Through aggressive EOT scaling and band-edge work-function metal gate stacks, appropriate Vts and superior short channel control has been achieved for both NMOS and PMOS at Lgate = 30 nm. Compared to SiON-Poly, 30% RO delay reduction has been demonstrated with HK-MG devices. 40% Vt mismatch reduction has been shown with the Tinv scaling. Furthermore, it has been shown that the 1/f noise and transistor reliability exceed the technology requirements.","PeriodicalId":173781,"journal":{"name":"2008 Symposium on VLSI Technology","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":"{\"title\":\"A cost effective 32nm high-K/ metal gate CMOS technology for low power applications with single-metal/gate-first process\",\"authors\":\"X. Chen, S. Samavedam, V. Narayanan, K. Stein, C. Hobbs, C. Baiocco, W. Li, D. Jaeger, M. Zaleski, H.S. Yang, N. Kim, Y. Lee, D. Zhang, L. Kang, J. Chen, H. Zhuang, A. Sheikh, J. Wallner, M. Aquilino, J. Han, Z. Jin, J. Li, G. Massey, S. Kalpat, R. Jha, N. Moumen, R. Mo, S. Kirshnan, X. Wang, M. Chudzik, M. Chowdhury, D. Nair, C. Reddy, Y. Teh, C. Kothandaraman, D. Coolbaugh, S. Pandey, D. Tekleab, A. Thean, M. Sherony, C. Lage, J. Sudijono, R. Lindsay, J. Ku, M. Khare, A. Steegen\",\"doi\":\"10.1109/VLSIT.2008.4588573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the first time, we have demonstrated a 32 nm high-k/metal gate (HK-MG) low power CMOS platform technology with low standby leakage transistors and functional high-density SRAM with a cell size of 0.157 mum2. Record NMOS/PMOS drive currents of 1000/575 muA/mum, respectively, have been achieved at 1 nA/mum off-current and 1.1 V Vdd with a low cost process. With this high performance transistor, Vdd can be further scaled to 1.0 V for active power reduction. Through aggressive EOT scaling and band-edge work-function metal gate stacks, appropriate Vts and superior short channel control has been achieved for both NMOS and PMOS at Lgate = 30 nm. Compared to SiON-Poly, 30% RO delay reduction has been demonstrated with HK-MG devices. 40% Vt mismatch reduction has been shown with the Tinv scaling. Furthermore, it has been shown that the 1/f noise and transistor reliability exceed the technology requirements.\",\"PeriodicalId\":173781,\"journal\":{\"name\":\"2008 Symposium on VLSI Technology\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"111\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIT.2008.4588573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2008.4588573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A cost effective 32nm high-K/ metal gate CMOS technology for low power applications with single-metal/gate-first process
For the first time, we have demonstrated a 32 nm high-k/metal gate (HK-MG) low power CMOS platform technology with low standby leakage transistors and functional high-density SRAM with a cell size of 0.157 mum2. Record NMOS/PMOS drive currents of 1000/575 muA/mum, respectively, have been achieved at 1 nA/mum off-current and 1.1 V Vdd with a low cost process. With this high performance transistor, Vdd can be further scaled to 1.0 V for active power reduction. Through aggressive EOT scaling and band-edge work-function metal gate stacks, appropriate Vts and superior short channel control has been achieved for both NMOS and PMOS at Lgate = 30 nm. Compared to SiON-Poly, 30% RO delay reduction has been demonstrated with HK-MG devices. 40% Vt mismatch reduction has been shown with the Tinv scaling. Furthermore, it has been shown that the 1/f noise and transistor reliability exceed the technology requirements.