预测学生学习成绩的关键属性

S. Hirokawa
{"title":"预测学生学习成绩的关键属性","authors":"S. Hirokawa","doi":"10.1145/3290511.3290576","DOIUrl":null,"url":null,"abstract":"Predicting student final score from student's attributes is an important issue of learning analytic. Not only to achieve high prediction performance but also to identifying the key attributes is an important research theme. This paper evaluated exhaustively the prediction performance based on all possible combinations of four types of attributes - behavioral features, demographic features, academic background, and parent participation. The behavioral features are given as numerical data. But, we represented them as pair of an attribute name and the value. This vectorization yields 417 dimensional data, while naively represented data has 68 dimension. By applyig support vector machine and feature selection, we obtained the optimal prediction performance, with respect to feature selection, with accuracy 0.8096 and F-measure 0.7726. We confirmed that the behavioral feature is so crucial that the accuracy reaches 0.7905 without other features except behavioral feature. The combination of behavior feature and demographic feature gained F-measure 0.7662.","PeriodicalId":446455,"journal":{"name":"International Conference on Education Technology and Computer","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Key attribute for predicting student academic performance\",\"authors\":\"S. Hirokawa\",\"doi\":\"10.1145/3290511.3290576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting student final score from student's attributes is an important issue of learning analytic. Not only to achieve high prediction performance but also to identifying the key attributes is an important research theme. This paper evaluated exhaustively the prediction performance based on all possible combinations of four types of attributes - behavioral features, demographic features, academic background, and parent participation. The behavioral features are given as numerical data. But, we represented them as pair of an attribute name and the value. This vectorization yields 417 dimensional data, while naively represented data has 68 dimension. By applyig support vector machine and feature selection, we obtained the optimal prediction performance, with respect to feature selection, with accuracy 0.8096 and F-measure 0.7726. We confirmed that the behavioral feature is so crucial that the accuracy reaches 0.7905 without other features except behavioral feature. The combination of behavior feature and demographic feature gained F-measure 0.7662.\",\"PeriodicalId\":446455,\"journal\":{\"name\":\"International Conference on Education Technology and Computer\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Education Technology and Computer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3290511.3290576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Education Technology and Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3290511.3290576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

从学生的属性预测学生的最终成绩是学习分析的一个重要问题。在实现高预测性能的同时,关键属性的识别是一个重要的研究课题。本文基于行为特征、人口特征、学术背景和家长参与四种属性的所有可能组合,对预测效果进行了详尽的评估。行为特征以数值形式给出。但是,我们将它们表示为属性名称和值对。这种向量化产生417维数据,而单纯表示的数据有68维。采用支持向量机和特征选择相结合的方法,在特征选择方面获得了最优的预测性能,准确率为0.8096,F-measure为0.7726。我们证实,行为特征是如此重要,以至于除了行为特征之外没有其他特征,准确率达到0.7905。结合行为特征和人口统计学特征,f值为0.7662。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Key attribute for predicting student academic performance
Predicting student final score from student's attributes is an important issue of learning analytic. Not only to achieve high prediction performance but also to identifying the key attributes is an important research theme. This paper evaluated exhaustively the prediction performance based on all possible combinations of four types of attributes - behavioral features, demographic features, academic background, and parent participation. The behavioral features are given as numerical data. But, we represented them as pair of an attribute name and the value. This vectorization yields 417 dimensional data, while naively represented data has 68 dimension. By applyig support vector machine and feature selection, we obtained the optimal prediction performance, with respect to feature selection, with accuracy 0.8096 and F-measure 0.7726. We confirmed that the behavioral feature is so crucial that the accuracy reaches 0.7905 without other features except behavioral feature. The combination of behavior feature and demographic feature gained F-measure 0.7662.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信