G. Langfelder, C. Buffa, P. Minotti, A. Longoni, A. Tocchio, S. Zerbini
{"title":"具有开关电流开关的洛伦兹力MEMS磁强计的操作","authors":"G. Langfelder, C. Buffa, P. Minotti, A. Longoni, A. Tocchio, S. Zerbini","doi":"10.1109/ESSDERC.2014.6948758","DOIUrl":null,"url":null,"abstract":"Combined off-resonance operation and on-off switching of the driving current is applied to a micro-electromechanical systems (MEMS) magnetometer. This novel driving technique allows improving the signal to noise ratio (SNR), and thus the minimum measurable magnetic field, with no added cost in terms of driving current. The technique is applied to a magnetometer built in a surface micromachining process. Measurements show a 5.4 times better resolution than for operation at resonance in continuous mode.","PeriodicalId":262652,"journal":{"name":"2014 44th European Solid State Device Research Conference (ESSDERC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Operation of Lorentz-force MEMS magnetometers with on-off current switching\",\"authors\":\"G. Langfelder, C. Buffa, P. Minotti, A. Longoni, A. Tocchio, S. Zerbini\",\"doi\":\"10.1109/ESSDERC.2014.6948758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combined off-resonance operation and on-off switching of the driving current is applied to a micro-electromechanical systems (MEMS) magnetometer. This novel driving technique allows improving the signal to noise ratio (SNR), and thus the minimum measurable magnetic field, with no added cost in terms of driving current. The technique is applied to a magnetometer built in a surface micromachining process. Measurements show a 5.4 times better resolution than for operation at resonance in continuous mode.\",\"PeriodicalId\":262652,\"journal\":{\"name\":\"2014 44th European Solid State Device Research Conference (ESSDERC)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 44th European Solid State Device Research Conference (ESSDERC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSDERC.2014.6948758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 44th European Solid State Device Research Conference (ESSDERC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2014.6948758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Operation of Lorentz-force MEMS magnetometers with on-off current switching
Combined off-resonance operation and on-off switching of the driving current is applied to a micro-electromechanical systems (MEMS) magnetometer. This novel driving technique allows improving the signal to noise ratio (SNR), and thus the minimum measurable magnetic field, with no added cost in terms of driving current. The technique is applied to a magnetometer built in a surface micromachining process. Measurements show a 5.4 times better resolution than for operation at resonance in continuous mode.