基于DCGAN的主轴热误差预测模型

Junhao Shi
{"title":"基于DCGAN的主轴热误差预测模型","authors":"Junhao Shi","doi":"10.1109/ICMRE54455.2022.9734098","DOIUrl":null,"url":null,"abstract":"Thermal error is one of the main error sources to affect machining accuracy, accounted for 40%-70% of the total error for machining. The compensation of thermal error is an efficient way to improve machining quality. Tradition data-driven modeling methods of thermal error usually relied on the selection of key temperature measurement points and training based on the shallow neural network with these selected temperature measurement points. Furthermore, the different working-conditions of CNC machine tools have different key temperature measurement points. In this paper, a new modeling method based on deep conditional generative adversarial network (DCGAN) is proposed. This method can automatically extract the features. The experiment results show that the method could reach an accuracy of 91% for thermal error prediction.","PeriodicalId":419108,"journal":{"name":"2022 8th International Conference on Mechatronics and Robotics Engineering (ICMRE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Predictive Model of Spindle Thermal Error Based on DCGAN\",\"authors\":\"Junhao Shi\",\"doi\":\"10.1109/ICMRE54455.2022.9734098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal error is one of the main error sources to affect machining accuracy, accounted for 40%-70% of the total error for machining. The compensation of thermal error is an efficient way to improve machining quality. Tradition data-driven modeling methods of thermal error usually relied on the selection of key temperature measurement points and training based on the shallow neural network with these selected temperature measurement points. Furthermore, the different working-conditions of CNC machine tools have different key temperature measurement points. In this paper, a new modeling method based on deep conditional generative adversarial network (DCGAN) is proposed. This method can automatically extract the features. The experiment results show that the method could reach an accuracy of 91% for thermal error prediction.\",\"PeriodicalId\":419108,\"journal\":{\"name\":\"2022 8th International Conference on Mechatronics and Robotics Engineering (ICMRE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 8th International Conference on Mechatronics and Robotics Engineering (ICMRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMRE54455.2022.9734098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Mechatronics and Robotics Engineering (ICMRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMRE54455.2022.9734098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

热误差是影响加工精度的主要误差源之一,占加工总误差的40% ~ 70%。热误差补偿是提高加工质量的有效途径。传统的数据驱动热误差建模方法通常依赖于关键温度测点的选择和基于这些选定的温度测点的浅层神经网络的训练。此外,数控机床在不同的工作条件下,有不同的关键温度测点。本文提出了一种基于深度条件生成对抗网络(DCGAN)的建模方法。该方法可以自动提取特征。实验结果表明,该方法可达到91%的热误差预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Predictive Model of Spindle Thermal Error Based on DCGAN
Thermal error is one of the main error sources to affect machining accuracy, accounted for 40%-70% of the total error for machining. The compensation of thermal error is an efficient way to improve machining quality. Tradition data-driven modeling methods of thermal error usually relied on the selection of key temperature measurement points and training based on the shallow neural network with these selected temperature measurement points. Furthermore, the different working-conditions of CNC machine tools have different key temperature measurement points. In this paper, a new modeling method based on deep conditional generative adversarial network (DCGAN) is proposed. This method can automatically extract the features. The experiment results show that the method could reach an accuracy of 91% for thermal error prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信