{"title":"利用社交手机功能预测消费行为","authors":"V. Singh, Laura Freeman, B. Lepri, A. Pentland","doi":"10.1109/SocialCom.2013.33","DOIUrl":null,"url":null,"abstract":"Human spending behavior is essentially social. This work motivates and grounds the use of mobile phone based social interaction features for classifying spending behavior. Using a data set involving 52 adults (26 couples) living in a community for over a year, we find that social behavior measured via face-to-face interaction, call, and SMS logs, can be used to predict the spending behavior for couples in terms of their propensity to explore diverse businesses, become loyal customers, and overspend. Our results show that mobile phone based social interaction patterns can provide more predictive power on spending behavior than often-used personality based features. Obtaining novel insights on spending behavior using social-computing frameworks can be of vital importance to economists, marketing professionals, and policy makers.","PeriodicalId":129308,"journal":{"name":"2013 International Conference on Social Computing","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Predicting Spending Behavior Using Socio-mobile Features\",\"authors\":\"V. Singh, Laura Freeman, B. Lepri, A. Pentland\",\"doi\":\"10.1109/SocialCom.2013.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human spending behavior is essentially social. This work motivates and grounds the use of mobile phone based social interaction features for classifying spending behavior. Using a data set involving 52 adults (26 couples) living in a community for over a year, we find that social behavior measured via face-to-face interaction, call, and SMS logs, can be used to predict the spending behavior for couples in terms of their propensity to explore diverse businesses, become loyal customers, and overspend. Our results show that mobile phone based social interaction patterns can provide more predictive power on spending behavior than often-used personality based features. Obtaining novel insights on spending behavior using social-computing frameworks can be of vital importance to economists, marketing professionals, and policy makers.\",\"PeriodicalId\":129308,\"journal\":{\"name\":\"2013 International Conference on Social Computing\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Social Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SocialCom.2013.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Social Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SocialCom.2013.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Spending Behavior Using Socio-mobile Features
Human spending behavior is essentially social. This work motivates and grounds the use of mobile phone based social interaction features for classifying spending behavior. Using a data set involving 52 adults (26 couples) living in a community for over a year, we find that social behavior measured via face-to-face interaction, call, and SMS logs, can be used to predict the spending behavior for couples in terms of their propensity to explore diverse businesses, become loyal customers, and overspend. Our results show that mobile phone based social interaction patterns can provide more predictive power on spending behavior than often-used personality based features. Obtaining novel insights on spending behavior using social-computing frameworks can be of vital importance to economists, marketing professionals, and policy makers.