Darren C. Cronquist, Paul Franklin, Stefan G. Berg, C. Ebeling
{"title":"为RaPiD指定和编译应用程序","authors":"Darren C. Cronquist, Paul Franklin, Stefan G. Berg, C. Ebeling","doi":"10.1109/FPGA.1998.707889","DOIUrl":null,"url":null,"abstract":"Efficient, deeply pipelined implementations exist for a wide variety of important computation-intensive applications, and many special-purpose hardware machines have been built that take advantage of these pipelined computation structures. While these implementations achieve high performance, this comes at the expense of flexibility. On the other hand, flexible architectures proposed thus far have not been very efficient. RaPiD is a reconfigurable pipelined datapath architecture designed to provide a combination of performance and flexibility for a variety of applications. It uses a combination of static and dynamic control to efficiently implement pipelined computations. This control, however, is very complicated; specifying a computation's control circuitry directly would be prohibitively difficult. This paper describes how specifications of a pipelined computation in a suitably high-level language are compiled into the control required to implement that computation in the RaPiD architecture. The compiler extracts a statically configured datapath from this description, identifies the dynamic control signals required to execute the computation, and then produces the control program and decoding structure that generates these dynamic control signals.","PeriodicalId":309841,"journal":{"name":"Proceedings. IEEE Symposium on FPGAs for Custom Computing Machines (Cat. No.98TB100251)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":"{\"title\":\"Specifying and compiling applications for RaPiD\",\"authors\":\"Darren C. Cronquist, Paul Franklin, Stefan G. Berg, C. Ebeling\",\"doi\":\"10.1109/FPGA.1998.707889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient, deeply pipelined implementations exist for a wide variety of important computation-intensive applications, and many special-purpose hardware machines have been built that take advantage of these pipelined computation structures. While these implementations achieve high performance, this comes at the expense of flexibility. On the other hand, flexible architectures proposed thus far have not been very efficient. RaPiD is a reconfigurable pipelined datapath architecture designed to provide a combination of performance and flexibility for a variety of applications. It uses a combination of static and dynamic control to efficiently implement pipelined computations. This control, however, is very complicated; specifying a computation's control circuitry directly would be prohibitively difficult. This paper describes how specifications of a pipelined computation in a suitably high-level language are compiled into the control required to implement that computation in the RaPiD architecture. The compiler extracts a statically configured datapath from this description, identifies the dynamic control signals required to execute the computation, and then produces the control program and decoding structure that generates these dynamic control signals.\",\"PeriodicalId\":309841,\"journal\":{\"name\":\"Proceedings. IEEE Symposium on FPGAs for Custom Computing Machines (Cat. No.98TB100251)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"111\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Symposium on FPGAs for Custom Computing Machines (Cat. No.98TB100251)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPGA.1998.707889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Symposium on FPGAs for Custom Computing Machines (Cat. No.98TB100251)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPGA.1998.707889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient, deeply pipelined implementations exist for a wide variety of important computation-intensive applications, and many special-purpose hardware machines have been built that take advantage of these pipelined computation structures. While these implementations achieve high performance, this comes at the expense of flexibility. On the other hand, flexible architectures proposed thus far have not been very efficient. RaPiD is a reconfigurable pipelined datapath architecture designed to provide a combination of performance and flexibility for a variety of applications. It uses a combination of static and dynamic control to efficiently implement pipelined computations. This control, however, is very complicated; specifying a computation's control circuitry directly would be prohibitively difficult. This paper describes how specifications of a pipelined computation in a suitably high-level language are compiled into the control required to implement that computation in the RaPiD architecture. The compiler extracts a statically configured datapath from this description, identifies the dynamic control signals required to execute the computation, and then produces the control program and decoding structure that generates these dynamic control signals.