用于物体硬度识别的触觉胶囊网络

Senlin Fang, Tingting Mi, Zhenning Zhou, Chaoxiang Ye, Chengliang Liu, Hancheng Wu, Zhengkun Yi, Xinyu Wu
{"title":"用于物体硬度识别的触觉胶囊网络","authors":"Senlin Fang, Tingting Mi, Zhenning Zhou, Chaoxiang Ye, Chengliang Liu, Hancheng Wu, Zhengkun Yi, Xinyu Wu","doi":"10.1109/RCAR52367.2021.9517551","DOIUrl":null,"url":null,"abstract":"Hardness is one of the most essential tactile clues for robots to recognize objects. However, methods for robots to recognize hardness are limited. In this paper, based on the Capsule Network (CapsNet), we propose a novel tactile capsule network (TactCapsNet) for object hardness recognition. Specifically, we collect a tactile dataset on the silicone samples with three different shapes, and the silicone samples of each shape have thirteen hardness levels ranging from 0A (Shore A scale) to 60A at 5A intervals. Furthermore, we construct the tactile image as the input of the CapsNet to make full use of the spatio-temporal information of the tactile hardness dataset. The experimental results prove that the proposed approach achieves higher accuracy and quadratic weighted kappa (QWK) than support vector machine (SVM), long short-term memory (LSTM), convolutional neural network (CNN), and CapsNet.","PeriodicalId":232892,"journal":{"name":"2021 IEEE International Conference on Real-time Computing and Robotics (RCAR)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"TactCapsNet: Tactile Capsule Network for Object Hardness Recognition\",\"authors\":\"Senlin Fang, Tingting Mi, Zhenning Zhou, Chaoxiang Ye, Chengliang Liu, Hancheng Wu, Zhengkun Yi, Xinyu Wu\",\"doi\":\"10.1109/RCAR52367.2021.9517551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hardness is one of the most essential tactile clues for robots to recognize objects. However, methods for robots to recognize hardness are limited. In this paper, based on the Capsule Network (CapsNet), we propose a novel tactile capsule network (TactCapsNet) for object hardness recognition. Specifically, we collect a tactile dataset on the silicone samples with three different shapes, and the silicone samples of each shape have thirteen hardness levels ranging from 0A (Shore A scale) to 60A at 5A intervals. Furthermore, we construct the tactile image as the input of the CapsNet to make full use of the spatio-temporal information of the tactile hardness dataset. The experimental results prove that the proposed approach achieves higher accuracy and quadratic weighted kappa (QWK) than support vector machine (SVM), long short-term memory (LSTM), convolutional neural network (CNN), and CapsNet.\",\"PeriodicalId\":232892,\"journal\":{\"name\":\"2021 IEEE International Conference on Real-time Computing and Robotics (RCAR)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Real-time Computing and Robotics (RCAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RCAR52367.2021.9517551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Real-time Computing and Robotics (RCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCAR52367.2021.9517551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

硬度是机器人识别物体最基本的触觉线索之一。然而,机器人识别硬度的方法是有限的。本文在胶囊网络(CapsNet)的基础上,提出了一种新的用于物体硬度识别的触觉胶囊网络(TactCapsNet)。具体而言,我们收集了三种不同形状的硅胶样品的触觉数据集,每种形状的硅胶样品有13个硬度等级,从0A (Shore a标度)到60A,间隔5A。进一步,我们构建触觉图像作为CapsNet的输入,充分利用触觉硬度数据集的时空信息。实验结果表明,该方法比支持向量机(SVM)、长短期记忆(LSTM)、卷积神经网络(CNN)和CapsNet具有更高的准确率和二次加权kappa (QWK)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TactCapsNet: Tactile Capsule Network for Object Hardness Recognition
Hardness is one of the most essential tactile clues for robots to recognize objects. However, methods for robots to recognize hardness are limited. In this paper, based on the Capsule Network (CapsNet), we propose a novel tactile capsule network (TactCapsNet) for object hardness recognition. Specifically, we collect a tactile dataset on the silicone samples with three different shapes, and the silicone samples of each shape have thirteen hardness levels ranging from 0A (Shore A scale) to 60A at 5A intervals. Furthermore, we construct the tactile image as the input of the CapsNet to make full use of the spatio-temporal information of the tactile hardness dataset. The experimental results prove that the proposed approach achieves higher accuracy and quadratic weighted kappa (QWK) than support vector machine (SVM), long short-term memory (LSTM), convolutional neural network (CNN), and CapsNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信