{"title":"从模型系统的机理研究中裁剪用于传感非含氢物质的场效应气体传感器","authors":"M. Andersson, A. Lloyd Spetz","doi":"10.1109/ICSENS.2009.5398282","DOIUrl":null,"url":null,"abstract":"To gain knowledge about the transduction mechanisms involved in the sensitivity of field effect gas sensors towards non-hydrogen containing substances, such as O2, NO and CO, the sensor signal characteristics during exposure of some conceptually different model sensors to these as well as hydrogen containing gases have been investigated. The MOS capacitor based model sensors employ different combinations of insulator and contact materials, such as MgO, LaF3, IrO2 etc. The gas composition downstream of the sensor during test gas exposure at various conditions has also been studied by mass spectrometry (MS) and compared for the different model systems. The results have been compared to the characteristics of ordinary SiC/SiO2/Pt structures and from the information obtained a tailor made field effect sensor structure for oxygen sensing, to our knowledge for the first time with minimal interference from H2, CO, and hydrocarbons, has been tested with promising results.","PeriodicalId":262591,"journal":{"name":"2009 IEEE Sensors","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Tailoring of field effect gas sensors for sensing of nonhydrogen containing substances from mechanistic studies on model systems\",\"authors\":\"M. Andersson, A. Lloyd Spetz\",\"doi\":\"10.1109/ICSENS.2009.5398282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To gain knowledge about the transduction mechanisms involved in the sensitivity of field effect gas sensors towards non-hydrogen containing substances, such as O2, NO and CO, the sensor signal characteristics during exposure of some conceptually different model sensors to these as well as hydrogen containing gases have been investigated. The MOS capacitor based model sensors employ different combinations of insulator and contact materials, such as MgO, LaF3, IrO2 etc. The gas composition downstream of the sensor during test gas exposure at various conditions has also been studied by mass spectrometry (MS) and compared for the different model systems. The results have been compared to the characteristics of ordinary SiC/SiO2/Pt structures and from the information obtained a tailor made field effect sensor structure for oxygen sensing, to our knowledge for the first time with minimal interference from H2, CO, and hydrocarbons, has been tested with promising results.\",\"PeriodicalId\":262591,\"journal\":{\"name\":\"2009 IEEE Sensors\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2009.5398282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2009.5398282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tailoring of field effect gas sensors for sensing of nonhydrogen containing substances from mechanistic studies on model systems
To gain knowledge about the transduction mechanisms involved in the sensitivity of field effect gas sensors towards non-hydrogen containing substances, such as O2, NO and CO, the sensor signal characteristics during exposure of some conceptually different model sensors to these as well as hydrogen containing gases have been investigated. The MOS capacitor based model sensors employ different combinations of insulator and contact materials, such as MgO, LaF3, IrO2 etc. The gas composition downstream of the sensor during test gas exposure at various conditions has also been studied by mass spectrometry (MS) and compared for the different model systems. The results have been compared to the characteristics of ordinary SiC/SiO2/Pt structures and from the information obtained a tailor made field effect sensor structure for oxygen sensing, to our knowledge for the first time with minimal interference from H2, CO, and hydrocarbons, has been tested with promising results.