一种快速高斯极大似然盲多信道估计方法

E. de Carvalho, D. Slock
{"title":"一种快速高斯极大似然盲多信道估计方法","authors":"E. de Carvalho, D. Slock","doi":"10.1109/SPAWC.1999.783073","DOIUrl":null,"url":null,"abstract":"We propose a blind maximum-likelihood method for FIR multichannel estimation, denoted GML. The GML criterion is derived assuming the input symbols as Gaussian random variables. The performance of GML (computed based on the true symbol distribution) is compared through numerical evaluations to the optimally weighted covariance matching method: both methods are equivalent in a certain asymptotic sense. A fast implementation of the scoring algorithm is proposed to solve GML.","PeriodicalId":365086,"journal":{"name":"1999 2nd IEEE Workshop on Signal Processing Advances in Wireless Communications (Cat. No.99EX304)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A fast Gaussian maximum-likelihood method for blind multichannel estimation\",\"authors\":\"E. de Carvalho, D. Slock\",\"doi\":\"10.1109/SPAWC.1999.783073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a blind maximum-likelihood method for FIR multichannel estimation, denoted GML. The GML criterion is derived assuming the input symbols as Gaussian random variables. The performance of GML (computed based on the true symbol distribution) is compared through numerical evaluations to the optimally weighted covariance matching method: both methods are equivalent in a certain asymptotic sense. A fast implementation of the scoring algorithm is proposed to solve GML.\",\"PeriodicalId\":365086,\"journal\":{\"name\":\"1999 2nd IEEE Workshop on Signal Processing Advances in Wireless Communications (Cat. No.99EX304)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 2nd IEEE Workshop on Signal Processing Advances in Wireless Communications (Cat. No.99EX304)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.1999.783073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 2nd IEEE Workshop on Signal Processing Advances in Wireless Communications (Cat. No.99EX304)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.1999.783073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一种盲极大似然法用于FIR多信道估计,记作GML。假设输入符号为高斯随机变量,推导出GML准则。通过数值计算比较了GML(基于真符号分布计算)与最优加权协方差匹配方法的性能:两种方法在一定的渐近意义上是等价的。提出了一种求解GML的快速评分算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast Gaussian maximum-likelihood method for blind multichannel estimation
We propose a blind maximum-likelihood method for FIR multichannel estimation, denoted GML. The GML criterion is derived assuming the input symbols as Gaussian random variables. The performance of GML (computed based on the true symbol distribution) is compared through numerical evaluations to the optimally weighted covariance matching method: both methods are equivalent in a certain asymptotic sense. A fast implementation of the scoring algorithm is proposed to solve GML.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信