{"title":"未知参数广义Lorenz系统的自适应同步","authors":"Lei Zhang","doi":"10.1109/APWCS.2010.14","DOIUrl":null,"url":null,"abstract":"The generalized Lorenz system contains a class of three-dimensional autonomous quadratic chaotic systems, which include Lorenz system, Chen system, Lü system and unified chaotic system. In this paper, an adaptive controller for the synchronization of two generalized Lorenz systems is designed by utilizing Lyapunov method, in that the parameters of the drive system are unknown and different from those of the response system. Simulation results also verify the effectiveness of the proposed control scheme.","PeriodicalId":354322,"journal":{"name":"2010 Asia-Pacific Conference on Wearable Computing Systems","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Adaptive Synchronization of Generalized Lorenz Systems with Unknown Parameters\",\"authors\":\"Lei Zhang\",\"doi\":\"10.1109/APWCS.2010.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generalized Lorenz system contains a class of three-dimensional autonomous quadratic chaotic systems, which include Lorenz system, Chen system, Lü system and unified chaotic system. In this paper, an adaptive controller for the synchronization of two generalized Lorenz systems is designed by utilizing Lyapunov method, in that the parameters of the drive system are unknown and different from those of the response system. Simulation results also verify the effectiveness of the proposed control scheme.\",\"PeriodicalId\":354322,\"journal\":{\"name\":\"2010 Asia-Pacific Conference on Wearable Computing Systems\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Asia-Pacific Conference on Wearable Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APWCS.2010.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Asia-Pacific Conference on Wearable Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APWCS.2010.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Synchronization of Generalized Lorenz Systems with Unknown Parameters
The generalized Lorenz system contains a class of three-dimensional autonomous quadratic chaotic systems, which include Lorenz system, Chen system, Lü system and unified chaotic system. In this paper, an adaptive controller for the synchronization of two generalized Lorenz systems is designed by utilizing Lyapunov method, in that the parameters of the drive system are unknown and different from those of the response system. Simulation results also verify the effectiveness of the proposed control scheme.