利用四个超声换能器进行三维声学微操纵

T. Kozuka, T. Tuziuti, H. Mitome, F. Arai, T. Fukuda
{"title":"利用四个超声换能器进行三维声学微操纵","authors":"T. Kozuka, T. Tuziuti, H. Mitome, F. Arai, T. Fukuda","doi":"10.1109/MHS.2000.903313","DOIUrl":null,"url":null,"abstract":"Non-contact micromanipulation is a fundamental technique in micromachine technology. Previously, we proposed a new manipulation technique to transport particles two-dimensionally using an ultrasonic standing wave field generated by three transducers, whose sound beam axes were arranged with an angle of 120/spl deg/ in a plane. The present paper describes an advanced technique to manipulate particles three-dimensionally using four transducers. The transducers were settled at each corner of a regular triangular pyramid with their soundbeam axes crossing at the center of the pyramid. All transducers were driven at the same frequency, and a standing wave field was generated in the crossing region. When polystyrene particles were poured with a pipette into the sound field, the particles were trapped at the node of the sound pressure in the central region of the sound field. Changing the phase of one transducer out of four, the trapped particles were transported along the sound beam axis of the transducer. Combining each movement along the four sound beam axes, three-dimensional non-contact manipulation of a particle was accomplished.","PeriodicalId":372317,"journal":{"name":"MHS2000. Proceedings of 2000 International Symposium on Micromechatronics and Human Science (Cat. No.00TH8530)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Three-dimensional acoustic micromanipulation using four ultrasonic transducers\",\"authors\":\"T. Kozuka, T. Tuziuti, H. Mitome, F. Arai, T. Fukuda\",\"doi\":\"10.1109/MHS.2000.903313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-contact micromanipulation is a fundamental technique in micromachine technology. Previously, we proposed a new manipulation technique to transport particles two-dimensionally using an ultrasonic standing wave field generated by three transducers, whose sound beam axes were arranged with an angle of 120/spl deg/ in a plane. The present paper describes an advanced technique to manipulate particles three-dimensionally using four transducers. The transducers were settled at each corner of a regular triangular pyramid with their soundbeam axes crossing at the center of the pyramid. All transducers were driven at the same frequency, and a standing wave field was generated in the crossing region. When polystyrene particles were poured with a pipette into the sound field, the particles were trapped at the node of the sound pressure in the central region of the sound field. Changing the phase of one transducer out of four, the trapped particles were transported along the sound beam axis of the transducer. Combining each movement along the four sound beam axes, three-dimensional non-contact manipulation of a particle was accomplished.\",\"PeriodicalId\":372317,\"journal\":{\"name\":\"MHS2000. Proceedings of 2000 International Symposium on Micromechatronics and Human Science (Cat. No.00TH8530)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MHS2000. Proceedings of 2000 International Symposium on Micromechatronics and Human Science (Cat. No.00TH8530)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MHS.2000.903313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MHS2000. Proceedings of 2000 International Symposium on Micromechatronics and Human Science (Cat. No.00TH8530)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MHS.2000.903313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

非接触微操作是微机械技术的一项基础技术。在此之前,我们提出了一种新的操作技术,利用由三个换能器产生的超声驻波场来二维传输粒子,这些换能器的声束轴在平面上以120/spl°/的角度排列。本文描述了一种利用四个换能器对粒子进行三维操纵的先进技术。换能器被安置在一个正三角形金字塔的每个角落,它们的声束轴在金字塔的中心交叉。所有换能器以相同频率驱动,在交叉区域产生驻波场。用移液器将聚苯乙烯颗粒注入声场,颗粒被困在声场中心区域的声压节点处。改变四个换能器中的一个的相位,捕获的粒子沿着换能器的声束轴传输。结合沿四个声束轴的每次运动,完成了粒子的三维非接触操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-dimensional acoustic micromanipulation using four ultrasonic transducers
Non-contact micromanipulation is a fundamental technique in micromachine technology. Previously, we proposed a new manipulation technique to transport particles two-dimensionally using an ultrasonic standing wave field generated by three transducers, whose sound beam axes were arranged with an angle of 120/spl deg/ in a plane. The present paper describes an advanced technique to manipulate particles three-dimensionally using four transducers. The transducers were settled at each corner of a regular triangular pyramid with their soundbeam axes crossing at the center of the pyramid. All transducers were driven at the same frequency, and a standing wave field was generated in the crossing region. When polystyrene particles were poured with a pipette into the sound field, the particles were trapped at the node of the sound pressure in the central region of the sound field. Changing the phase of one transducer out of four, the trapped particles were transported along the sound beam axis of the transducer. Combining each movement along the four sound beam axes, three-dimensional non-contact manipulation of a particle was accomplished.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信