多输入多输出天线系统的低复杂度正极球解码

Hwanchol Jang, Heung-no Lee, S. Nooshabadi
{"title":"多输入多输出天线系统的低复杂度正极球解码","authors":"Hwanchol Jang, Heung-no Lee, S. Nooshabadi","doi":"10.1109/MWSCAS.2010.5548914","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a maximum likelihood (ML)-like performance reduced computational complexity sorted orthotope sphere decoding (OSD), and zero forced (ZF) sorted OSD algorithms for the spatial multiplexing (SM) in a multiple-input multiple-output (MIMO) system. In comparison with the original OSD our technique reduces the number of partial Euclidean distance (PED) computations by up to 28%, and 25% for QPSK and 16-QAM 4×4 MIMO systems, respectively.","PeriodicalId":245322,"journal":{"name":"2010 53rd IEEE International Midwest Symposium on Circuits and Systems","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reduced-complexity orthotope sphere decoding for multiple-input multiple-output antenna system\",\"authors\":\"Hwanchol Jang, Heung-no Lee, S. Nooshabadi\",\"doi\":\"10.1109/MWSCAS.2010.5548914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a maximum likelihood (ML)-like performance reduced computational complexity sorted orthotope sphere decoding (OSD), and zero forced (ZF) sorted OSD algorithms for the spatial multiplexing (SM) in a multiple-input multiple-output (MIMO) system. In comparison with the original OSD our technique reduces the number of partial Euclidean distance (PED) computations by up to 28%, and 25% for QPSK and 16-QAM 4×4 MIMO systems, respectively.\",\"PeriodicalId\":245322,\"journal\":{\"name\":\"2010 53rd IEEE International Midwest Symposium on Circuits and Systems\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 53rd IEEE International Midwest Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.2010.5548914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 53rd IEEE International Midwest Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2010.5548914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一种类似于最大似然(ML)的性能降低计算复杂度的排序正交球解码(OSD)和零强制(ZF)排序OSD算法,用于多输入多输出(MIMO)系统中的空间复用(SM)。与原始的OSD相比,我们的技术将QPSK和16-QAM 4×4 MIMO系统的部分欧几里得距离(PED)计算次数分别减少了28%和25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced-complexity orthotope sphere decoding for multiple-input multiple-output antenna system
In this paper, we propose a maximum likelihood (ML)-like performance reduced computational complexity sorted orthotope sphere decoding (OSD), and zero forced (ZF) sorted OSD algorithms for the spatial multiplexing (SM) in a multiple-input multiple-output (MIMO) system. In comparison with the original OSD our technique reduces the number of partial Euclidean distance (PED) computations by up to 28%, and 25% for QPSK and 16-QAM 4×4 MIMO systems, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信