基于深度神经网络的双头/双轨位模式磁记录软信息改进

Anawin Khametong, N. Rueangnetr, C. Warisarn, S. Koonkarnkhai, P. Kovintavewat
{"title":"基于深度神经网络的双头/双轨位模式磁记录软信息改进","authors":"Anawin Khametong, N. Rueangnetr, C. Warisarn, S. Koonkarnkhai, P. Kovintavewat","doi":"10.1109/ISPACS57703.2022.10082796","DOIUrl":null,"url":null,"abstract":"To increase an areal density (AD) of an ultra-high density bit-patterned magnetic recording (BPMR) system, we have previously proposed a track misregistration (TMR) correction method combined with the soft information adjustor (SIA) to cope with the effects of TMR and two-dimensional (2D) interference. However, we found that soft information or log-likelihood ratio (LLR) can be improved to earn better bit-error-rate (BER) performances. In this work; therefore, we propose to use two types of deep neural networks (DNNs), i.e., multi-layer perceptron (MLP) and long short-term memory (LSTM) network with identical parameter magnitude to improve overall system performance. Here, both DNNs are operated with an earlier SIA on a two-head/two-track (2H2T) BPMR system. Numerical results show that our proposed methods can deliver better BER performance over the earlier SIA system at all TMR levels with and without position jitter noises at the AD of 3.0 Terabit per square inch.","PeriodicalId":410603,"journal":{"name":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Neural Networks based Soft-Information Improvement for Two-head/Two-track Bit-Patterned Magnetic Recording\",\"authors\":\"Anawin Khametong, N. Rueangnetr, C. Warisarn, S. Koonkarnkhai, P. Kovintavewat\",\"doi\":\"10.1109/ISPACS57703.2022.10082796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To increase an areal density (AD) of an ultra-high density bit-patterned magnetic recording (BPMR) system, we have previously proposed a track misregistration (TMR) correction method combined with the soft information adjustor (SIA) to cope with the effects of TMR and two-dimensional (2D) interference. However, we found that soft information or log-likelihood ratio (LLR) can be improved to earn better bit-error-rate (BER) performances. In this work; therefore, we propose to use two types of deep neural networks (DNNs), i.e., multi-layer perceptron (MLP) and long short-term memory (LSTM) network with identical parameter magnitude to improve overall system performance. Here, both DNNs are operated with an earlier SIA on a two-head/two-track (2H2T) BPMR system. Numerical results show that our proposed methods can deliver better BER performance over the earlier SIA system at all TMR levels with and without position jitter noises at the AD of 3.0 Terabit per square inch.\",\"PeriodicalId\":410603,\"journal\":{\"name\":\"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS57703.2022.10082796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS57703.2022.10082796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高超高密度比特模式磁记录(BPMR)系统的面密度(AD),我们提出了一种结合软信息调节器(SIA)的航迹错配(TMR)校正方法,以应对TMR和二维(2D)干扰的影响。然而,我们发现可以改进软信息或对数似然比(LLR)来获得更好的误码率(BER)性能。在这项工作中;因此,我们建议使用两种类型的深度神经网络(dnn),即具有相同参数大小的多层感知器(MLP)和长短期记忆(LSTM)网络来提高系统的整体性能。在这里,两种dnn都在双头/双轨(2H2T) BPMR系统上与早期SIA一起操作。数值结果表明,在AD为3.0太比特/平方英寸的情况下,我们提出的方法在所有TMR电平下都能比早期的SIA系统提供更好的误码率性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Neural Networks based Soft-Information Improvement for Two-head/Two-track Bit-Patterned Magnetic Recording
To increase an areal density (AD) of an ultra-high density bit-patterned magnetic recording (BPMR) system, we have previously proposed a track misregistration (TMR) correction method combined with the soft information adjustor (SIA) to cope with the effects of TMR and two-dimensional (2D) interference. However, we found that soft information or log-likelihood ratio (LLR) can be improved to earn better bit-error-rate (BER) performances. In this work; therefore, we propose to use two types of deep neural networks (DNNs), i.e., multi-layer perceptron (MLP) and long short-term memory (LSTM) network with identical parameter magnitude to improve overall system performance. Here, both DNNs are operated with an earlier SIA on a two-head/two-track (2H2T) BPMR system. Numerical results show that our proposed methods can deliver better BER performance over the earlier SIA system at all TMR levels with and without position jitter noises at the AD of 3.0 Terabit per square inch.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信