{"title":"C-Fos在生长因子调控基质溶解素/转蛋白基因表达中的作用。","authors":"L D Kerr, B E Magun, L M Matrisian","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Expression of the rat stromelysin (transin) gene is stimulated by growth factors such as epidermal growth factor (EGF) and platelet-derived growth factor (PDGF), and inhibited by transforming growth factor-beta (TGF beta). Stimulation by both EGF and PDGF requires the presence of factors that recognize the AP-1 binding site in the stromelysin promoter, but PDGF stimulation requires induction of the protooncogene c-fos, while EGF acts through a FOS-independent pathway. The FOS-independent pathway appears to involve protein kinase C (PKC), since EGF, but not PDGF, requires activated protein kinase C to stimulate stromelysin expression. TGF beta inhibition of stromelysin gene expression requires an upstream sequence, referred to as the TGF beta inhibitory element (TIE). FOS is also a part of a protein complex that binds to the TIE. The protooncogene FOS is therefore involved in both stimulation and inhibition of stromelysin gene expression.</p>","PeriodicalId":77254,"journal":{"name":"Matrix (Stuttgart, Germany). Supplement","volume":"1 ","pages":"176-83"},"PeriodicalIF":0.0000,"publicationDate":"1992-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of C-Fos in growth factor regulation of stromelysin/transin gene expression.\",\"authors\":\"L D Kerr, B E Magun, L M Matrisian\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Expression of the rat stromelysin (transin) gene is stimulated by growth factors such as epidermal growth factor (EGF) and platelet-derived growth factor (PDGF), and inhibited by transforming growth factor-beta (TGF beta). Stimulation by both EGF and PDGF requires the presence of factors that recognize the AP-1 binding site in the stromelysin promoter, but PDGF stimulation requires induction of the protooncogene c-fos, while EGF acts through a FOS-independent pathway. The FOS-independent pathway appears to involve protein kinase C (PKC), since EGF, but not PDGF, requires activated protein kinase C to stimulate stromelysin expression. TGF beta inhibition of stromelysin gene expression requires an upstream sequence, referred to as the TGF beta inhibitory element (TIE). FOS is also a part of a protein complex that binds to the TIE. The protooncogene FOS is therefore involved in both stimulation and inhibition of stromelysin gene expression.</p>\",\"PeriodicalId\":77254,\"journal\":{\"name\":\"Matrix (Stuttgart, Germany). Supplement\",\"volume\":\"1 \",\"pages\":\"176-83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matrix (Stuttgart, Germany). Supplement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix (Stuttgart, Germany). Supplement","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The role of C-Fos in growth factor regulation of stromelysin/transin gene expression.
Expression of the rat stromelysin (transin) gene is stimulated by growth factors such as epidermal growth factor (EGF) and platelet-derived growth factor (PDGF), and inhibited by transforming growth factor-beta (TGF beta). Stimulation by both EGF and PDGF requires the presence of factors that recognize the AP-1 binding site in the stromelysin promoter, but PDGF stimulation requires induction of the protooncogene c-fos, while EGF acts through a FOS-independent pathway. The FOS-independent pathway appears to involve protein kinase C (PKC), since EGF, but not PDGF, requires activated protein kinase C to stimulate stromelysin expression. TGF beta inhibition of stromelysin gene expression requires an upstream sequence, referred to as the TGF beta inhibitory element (TIE). FOS is also a part of a protein complex that binds to the TIE. The protooncogene FOS is therefore involved in both stimulation and inhibition of stromelysin gene expression.