加速深度电气故障的硅后调试

Bao Le, D. Sengupta, A. Veneris, Zissis Poulos
{"title":"加速深度电气故障的硅后调试","authors":"Bao Le, D. Sengupta, A. Veneris, Zissis Poulos","doi":"10.1109/IOLTS.2013.6604052","DOIUrl":null,"url":null,"abstract":"With the growing complexity of current designs and shrinking time-to-market, traditional ATPG methods fail to detect all electrical faults in the design. Debug teams have to spend considerable amount of time and effort to identify these faults during post silicon debug. This work proposes off-chip analysis to speed-up the effort of identifying hard-to-find electrical faults that are not detected using conventional test methods, but cause the chip to crash during functional testing or silicon-bring-up. With the goal of reducing the search space for reconstructing the failure trace path, formal methodology is used to analyze the reachable states along the path. Isolating the root cause of failure is also accelerated. Moreover, we propose a forward traversal technique on selected few possible faults to generate a complete failure trace starting from the initial state to the crash state. Experimental results show that the proposed approach can lead to a 44% reduction in actual silicon run with a commensurate reduction in off-chip debug time.","PeriodicalId":423175,"journal":{"name":"2013 IEEE 19th International On-Line Testing Symposium (IOLTS)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Accelerating post silicon debug of deep electrical faults\",\"authors\":\"Bao Le, D. Sengupta, A. Veneris, Zissis Poulos\",\"doi\":\"10.1109/IOLTS.2013.6604052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing complexity of current designs and shrinking time-to-market, traditional ATPG methods fail to detect all electrical faults in the design. Debug teams have to spend considerable amount of time and effort to identify these faults during post silicon debug. This work proposes off-chip analysis to speed-up the effort of identifying hard-to-find electrical faults that are not detected using conventional test methods, but cause the chip to crash during functional testing or silicon-bring-up. With the goal of reducing the search space for reconstructing the failure trace path, formal methodology is used to analyze the reachable states along the path. Isolating the root cause of failure is also accelerated. Moreover, we propose a forward traversal technique on selected few possible faults to generate a complete failure trace starting from the initial state to the crash state. Experimental results show that the proposed approach can lead to a 44% reduction in actual silicon run with a commensurate reduction in off-chip debug time.\",\"PeriodicalId\":423175,\"journal\":{\"name\":\"2013 IEEE 19th International On-Line Testing Symposium (IOLTS)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 19th International On-Line Testing Symposium (IOLTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IOLTS.2013.6604052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 19th International On-Line Testing Symposium (IOLTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOLTS.2013.6604052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着当前设计的日益复杂和上市时间的缩短,传统的ATPG方法无法检测到设计中的所有电气故障。调试团队必须花费相当多的时间和精力在硅后调试期间识别这些错误。这项工作提出了芯片外分析,以加快识别难以发现的电气故障的努力,这些故障使用传统的测试方法无法检测到,但会导致芯片在功能测试或硅启动期间崩溃。为了减少重构故障跟踪路径的搜索空间,采用形式化方法对路径上的可达状态进行分析。隔离故障的根本原因也加快了。此外,我们提出了一种前向遍历技术,选择少数可能的故障来生成从初始状态到崩溃状态的完整故障跟踪。实验结果表明,该方法可以使实际芯片运行时间减少44%,并相应减少片外调试时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating post silicon debug of deep electrical faults
With the growing complexity of current designs and shrinking time-to-market, traditional ATPG methods fail to detect all electrical faults in the design. Debug teams have to spend considerable amount of time and effort to identify these faults during post silicon debug. This work proposes off-chip analysis to speed-up the effort of identifying hard-to-find electrical faults that are not detected using conventional test methods, but cause the chip to crash during functional testing or silicon-bring-up. With the goal of reducing the search space for reconstructing the failure trace path, formal methodology is used to analyze the reachable states along the path. Isolating the root cause of failure is also accelerated. Moreover, we propose a forward traversal technique on selected few possible faults to generate a complete failure trace starting from the initial state to the crash state. Experimental results show that the proposed approach can lead to a 44% reduction in actual silicon run with a commensurate reduction in off-chip debug time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信