基质金属蛋白酶1、2和3前体的活化机制。

H Nagase, K Suzuki, T Morodomi, J J Enghild, G Salvesen
{"title":"基质金属蛋白酶1、2和3前体的活化机制。","authors":"H Nagase,&nbsp;K Suzuki,&nbsp;T Morodomi,&nbsp;J J Enghild,&nbsp;G Salvesen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The zymogens of matrix metalloproteinase 1 (MMP-1: tissue collagenase), MMP-2 (gelatinase/type IV collagenase) and MMP-3 (stromelysin) were purified from the culture medium of human rheumatoid synovial fibroblasts and the mechanisms of activation of each zymogen by proteinases and 4-aminophenylmercuric acetate (APMA) were studied by kinetic and sequence analyses. The treatment of proMMP-1 (M(r) = 52,000) with proteinases or APMA converted the zymogen to M(r) = 43,000, but it exhibited only 14-25% of the maximal activity. Incubation of a partially active MMP-1 with MMP-3 resulted in rapid, full activation by generating the 41,000-M(r) MMP-1 with Phe81 as the NH2-terminus. MMP-3 directly activated proMMP-1 by cleaving the Gln80-Phe81 bond, but this reaction was extremely slow, indicating that the Gln80-Phe81 bond is not readily available to MMP-3 in the native proMMP-1 molecule. ProMMP-2 (M(r) = 72,000) was activated only by APMA, but not by proteinases. The activation by APMA was rapid and generated an active MMP-2 of M(r) 68,000, but the enzymic activity declined rapidly after activation by autolysis. The NH2-terminal sequence analysis of active MMP-2 indicated that the Asn80-Tyr81 bond was cleaved upon APMA treatment. In contrast, proMMP-3 (M(r) = 57,000) was activated by a variety of proteinases with different specificities. The initial attacks of these proteinases are on a stretch of highly charged groups at the position 34-39 in the propeptide.(ABSTRACT TRUNCATED AT 250 WORDS)</p>","PeriodicalId":77254,"journal":{"name":"Matrix (Stuttgart, Germany). Supplement","volume":"1 ","pages":"237-44"},"PeriodicalIF":0.0000,"publicationDate":"1992-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activation mechanisms of the precursors of matrix metalloproteinases 1, 2 and 3.\",\"authors\":\"H Nagase,&nbsp;K Suzuki,&nbsp;T Morodomi,&nbsp;J J Enghild,&nbsp;G Salvesen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The zymogens of matrix metalloproteinase 1 (MMP-1: tissue collagenase), MMP-2 (gelatinase/type IV collagenase) and MMP-3 (stromelysin) were purified from the culture medium of human rheumatoid synovial fibroblasts and the mechanisms of activation of each zymogen by proteinases and 4-aminophenylmercuric acetate (APMA) were studied by kinetic and sequence analyses. The treatment of proMMP-1 (M(r) = 52,000) with proteinases or APMA converted the zymogen to M(r) = 43,000, but it exhibited only 14-25% of the maximal activity. Incubation of a partially active MMP-1 with MMP-3 resulted in rapid, full activation by generating the 41,000-M(r) MMP-1 with Phe81 as the NH2-terminus. MMP-3 directly activated proMMP-1 by cleaving the Gln80-Phe81 bond, but this reaction was extremely slow, indicating that the Gln80-Phe81 bond is not readily available to MMP-3 in the native proMMP-1 molecule. ProMMP-2 (M(r) = 72,000) was activated only by APMA, but not by proteinases. The activation by APMA was rapid and generated an active MMP-2 of M(r) 68,000, but the enzymic activity declined rapidly after activation by autolysis. The NH2-terminal sequence analysis of active MMP-2 indicated that the Asn80-Tyr81 bond was cleaved upon APMA treatment. In contrast, proMMP-3 (M(r) = 57,000) was activated by a variety of proteinases with different specificities. The initial attacks of these proteinases are on a stretch of highly charged groups at the position 34-39 in the propeptide.(ABSTRACT TRUNCATED AT 250 WORDS)</p>\",\"PeriodicalId\":77254,\"journal\":{\"name\":\"Matrix (Stuttgart, Germany). Supplement\",\"volume\":\"1 \",\"pages\":\"237-44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matrix (Stuttgart, Germany). Supplement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix (Stuttgart, Germany). Supplement","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从人类风湿滑膜成纤维细胞培养基中纯化了基质金属蛋白酶1 (MMP-1:组织胶原酶)、明胶酶2 (MMP-2 / IV型胶原酶)和基质金属蛋白酶3 (MMP-3)酶原,并通过动力学分析和序列分析研究了蛋白酶和4-氨基苯基醋酸汞(APMA)活化这些酶原的机制。用蛋白酶或APMA处理proMMP-1 (M(r) = 52,000)后,酶原转化为M(r) = 43,000,但仅表现出最大活性的14-25%。将部分活化的MMP-1与MMP-3孵育,产生41,000 m (r)的MMP-1,以Phe81为nh2末端,从而实现快速、完全活化。MMP-3通过切割Gln80-Phe81键直接激活了proMMP-1,但这个反应非常缓慢,这表明在天然的proMMP-1分子中,Gln80-Phe81键不容易被MMP-3利用。ProMMP-2 (M(r) = 72,000)仅被APMA激活,而不被蛋白酶激活。APMA对MMP-2的激活是快速的,产生了M(r) 68000的活性MMP-2,但自解激活后酶活性迅速下降。活性MMP-2的nh2末端序列分析表明,APMA处理导致Asn80-Tyr81键断裂。相反,proMMP-3 (M(r) = 57000)被多种不同特异性的蛋白酶激活。这些蛋白酶的初始攻击是在前肽34-39位的一段高电荷基团上。(摘要删节250字)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Activation mechanisms of the precursors of matrix metalloproteinases 1, 2 and 3.

The zymogens of matrix metalloproteinase 1 (MMP-1: tissue collagenase), MMP-2 (gelatinase/type IV collagenase) and MMP-3 (stromelysin) were purified from the culture medium of human rheumatoid synovial fibroblasts and the mechanisms of activation of each zymogen by proteinases and 4-aminophenylmercuric acetate (APMA) were studied by kinetic and sequence analyses. The treatment of proMMP-1 (M(r) = 52,000) with proteinases or APMA converted the zymogen to M(r) = 43,000, but it exhibited only 14-25% of the maximal activity. Incubation of a partially active MMP-1 with MMP-3 resulted in rapid, full activation by generating the 41,000-M(r) MMP-1 with Phe81 as the NH2-terminus. MMP-3 directly activated proMMP-1 by cleaving the Gln80-Phe81 bond, but this reaction was extremely slow, indicating that the Gln80-Phe81 bond is not readily available to MMP-3 in the native proMMP-1 molecule. ProMMP-2 (M(r) = 72,000) was activated only by APMA, but not by proteinases. The activation by APMA was rapid and generated an active MMP-2 of M(r) 68,000, but the enzymic activity declined rapidly after activation by autolysis. The NH2-terminal sequence analysis of active MMP-2 indicated that the Asn80-Tyr81 bond was cleaved upon APMA treatment. In contrast, proMMP-3 (M(r) = 57,000) was activated by a variety of proteinases with different specificities. The initial attacks of these proteinases are on a stretch of highly charged groups at the position 34-39 in the propeptide.(ABSTRACT TRUNCATED AT 250 WORDS)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信