大数据量神经训练数据选择的主要曲线

Fernando Elias de Melo Borges, J. Seixas, D. Ferreira
{"title":"大数据量神经训练数据选择的主要曲线","authors":"Fernando Elias de Melo Borges, J. Seixas, D. Ferreira","doi":"10.21528/cbic2019-21","DOIUrl":null,"url":null,"abstract":"—In environments with big data problems, to make a smart data selection with the goal of training machine can be essential to reduce the computational demand of the application. This paper presents a method based on principal curves for data selection during the neural networks training in an experiment of particle collision with high events rate. The method used real data of collision and it accomplished 3 selection approaches through mapping of Euclidean distances in each event to the respective Principal Curve. Preliminary results in the classification of neural networks presented low differences using the selection method and considerable reduction in the training time.","PeriodicalId":160474,"journal":{"name":"Anais do 14. Congresso Brasileiro de Inteligência Computacional","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curvas Principais para a Seleção de Dados de Treinamento Neural com Grandes Volumes de Dados\",\"authors\":\"Fernando Elias de Melo Borges, J. Seixas, D. Ferreira\",\"doi\":\"10.21528/cbic2019-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—In environments with big data problems, to make a smart data selection with the goal of training machine can be essential to reduce the computational demand of the application. This paper presents a method based on principal curves for data selection during the neural networks training in an experiment of particle collision with high events rate. The method used real data of collision and it accomplished 3 selection approaches through mapping of Euclidean distances in each event to the respective Principal Curve. Preliminary results in the classification of neural networks presented low differences using the selection method and considerable reduction in the training time.\",\"PeriodicalId\":160474,\"journal\":{\"name\":\"Anais do 14. Congresso Brasileiro de Inteligência Computacional\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do 14. Congresso Brasileiro de Inteligência Computacional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21528/cbic2019-21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do 14. Congresso Brasileiro de Inteligência Computacional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21528/cbic2019-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在存在大数据问题的环境中,以训练机器为目标进行智能数据选择,对于降低应用的计算需求至关重要。在高事件率粒子碰撞实验中,提出了一种基于主曲线的神经网络训练数据选择方法。该方法利用实际碰撞数据,通过将每个事件的欧几里得距离映射到各自的主曲线,实现了3种选择方法。采用选择方法对神经网络进行分类的初步结果差异较小,训练时间大大缩短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Curvas Principais para a Seleção de Dados de Treinamento Neural com Grandes Volumes de Dados
—In environments with big data problems, to make a smart data selection with the goal of training machine can be essential to reduce the computational demand of the application. This paper presents a method based on principal curves for data selection during the neural networks training in an experiment of particle collision with high events rate. The method used real data of collision and it accomplished 3 selection approaches through mapping of Euclidean distances in each event to the respective Principal Curve. Preliminary results in the classification of neural networks presented low differences using the selection method and considerable reduction in the training time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信