{"title":"一种基于3.2- 3.8 ghz免校准谐波混频器的双反馈分数n锁相环,可实现-66dBc的最坏情况带内分数杂散","authors":"Masaru Osada, Zule Xu, T. Iizuka","doi":"10.1109/VLSICircuits18222.2020.9162799","DOIUrl":null,"url":null,"abstract":"A dual-feedback architecture for a fractional-N PLL is proposed to achieve low spurs and to suppress the phase noise degradation from the Delta-Sigma Modulator (DSM). With the assistance of 1 auxiliary PLL, the proposed architecture avoids noise amplification that occurs in conventional architectures. The feasibility of the proposed architecture is demonstrated in a calibration-free 3.2-to-3.8GHz analog fractional-N PLL that achieves –69dBc out-of-band spur and –66dBc worst-case in-band fractional spur.","PeriodicalId":252787,"journal":{"name":"2020 IEEE Symposium on VLSI Circuits","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A 3.2-to-3.8GHz Calibration-Free Harmonic-Mixer-Based Dual-Feedback Fractional-N PLL Achieving –66dBc Worst-Case In-Band Fractional Spur\",\"authors\":\"Masaru Osada, Zule Xu, T. Iizuka\",\"doi\":\"10.1109/VLSICircuits18222.2020.9162799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A dual-feedback architecture for a fractional-N PLL is proposed to achieve low spurs and to suppress the phase noise degradation from the Delta-Sigma Modulator (DSM). With the assistance of 1 auxiliary PLL, the proposed architecture avoids noise amplification that occurs in conventional architectures. The feasibility of the proposed architecture is demonstrated in a calibration-free 3.2-to-3.8GHz analog fractional-N PLL that achieves –69dBc out-of-band spur and –66dBc worst-case in-band fractional spur.\",\"PeriodicalId\":252787,\"journal\":{\"name\":\"2020 IEEE Symposium on VLSI Circuits\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSICircuits18222.2020.9162799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSICircuits18222.2020.9162799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A dual-feedback architecture for a fractional-N PLL is proposed to achieve low spurs and to suppress the phase noise degradation from the Delta-Sigma Modulator (DSM). With the assistance of 1 auxiliary PLL, the proposed architecture avoids noise amplification that occurs in conventional architectures. The feasibility of the proposed architecture is demonstrated in a calibration-free 3.2-to-3.8GHz analog fractional-N PLL that achieves –69dBc out-of-band spur and –66dBc worst-case in-band fractional spur.