使用强化学习方法的仿真优化

Carlos D. Paternina-Arboleda, J. Montoya-Torres, A. Fabregas-Ariza
{"title":"使用强化学习方法的仿真优化","authors":"Carlos D. Paternina-Arboleda, J. Montoya-Torres, A. Fabregas-Ariza","doi":"10.1109/WSC.2008.4736213","DOIUrl":null,"url":null,"abstract":"The global optimization of complex systems such as industrial systems often necessitates the use of computer simulation. In this paper, we suggest the use of reinforcement learning (RL) algorithms and artificial neural networks for the optimization of simulation models. Several types of variables are taken into account in order to find global optimum values. After a first evaluation through mathematical functions with known optima, the benefits of our approach are illustrated through the example of an inventory control problem frequently found in manufacturing systems. Single-item and multi-item inventory cases are considered. The efficiency of the proposed procedure is compared against a commercial tool.","PeriodicalId":162289,"journal":{"name":"2008 Winter Simulation Conference","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Simulation-optimization using a reinforcement learning approach\",\"authors\":\"Carlos D. Paternina-Arboleda, J. Montoya-Torres, A. Fabregas-Ariza\",\"doi\":\"10.1109/WSC.2008.4736213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The global optimization of complex systems such as industrial systems often necessitates the use of computer simulation. In this paper, we suggest the use of reinforcement learning (RL) algorithms and artificial neural networks for the optimization of simulation models. Several types of variables are taken into account in order to find global optimum values. After a first evaluation through mathematical functions with known optima, the benefits of our approach are illustrated through the example of an inventory control problem frequently found in manufacturing systems. Single-item and multi-item inventory cases are considered. The efficiency of the proposed procedure is compared against a commercial tool.\",\"PeriodicalId\":162289,\"journal\":{\"name\":\"2008 Winter Simulation Conference\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Winter Simulation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2008.4736213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Winter Simulation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2008.4736213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

复杂系统如工业系统的全局优化常常需要使用计算机模拟。在本文中,我们建议使用强化学习(RL)算法和人工神经网络来优化仿真模型。为了找到全局最优值,考虑了几种类型的变量。在通过已知最优的数学函数进行第一次评估后,通过制造系统中经常发现的库存控制问题的示例说明了我们方法的优点。考虑单项目和多项目库存情况。将所提出的程序的效率与商业工具进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation-optimization using a reinforcement learning approach
The global optimization of complex systems such as industrial systems often necessitates the use of computer simulation. In this paper, we suggest the use of reinforcement learning (RL) algorithms and artificial neural networks for the optimization of simulation models. Several types of variables are taken into account in order to find global optimum values. After a first evaluation through mathematical functions with known optima, the benefits of our approach are illustrated through the example of an inventory control problem frequently found in manufacturing systems. Single-item and multi-item inventory cases are considered. The efficiency of the proposed procedure is compared against a commercial tool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信