{"title":"解决方案手册","authors":"R. Schilling","doi":"10.1002/9781119617570.oth","DOIUrl":null,"url":null,"abstract":"alternative: Let (Xt)t∈I be a real-valued stochastic process which has a second moment (such that the covariance is defined!), set μt = EXt. For any finite set S ⊂ I we pick λs ∈ C, s ∈ S. Then ∑ s,t∈S Cov(Xs,Xt)λsλ̄t = ∑ s,t∈S E ((Xs − μs)(Xt − μt))λsλ̄t = E ⎛ ⎝ ∑ s,t∈S (Xs − μs)λs(Xt − μt)λt ⎞ ⎠ = E(∑ s∈S (Xs − μs)λs∑ t∈S (Xt − μt)λt) = E ⎛ ⎝ ∣∑ s∈S (Xs − μs)λs∣ ⎞ ⎠ ⩾ 0. Remark: Note that this alternative does not prove that the covariance is strictly positive definite. A standard counterexample is to take Xs ≡X. Problem 2.3 (Solution) These are direct & straightforward calculations. Problem 2.4 (Solution) Let ei = (0, . . . ,0,1 ́11111111111111111 ̧111111111111111111¶ i ,0 . . .) ∈ R be the ith standard unit vector. Then aii = ⟨Aei, ei⟩ = ⟨Bei, ei⟩ = bii. Moreover, for i ≠ j, we get by the symmetry of A and B ⟨A(ei + ej), ei + ej⟩ = aii + ajj + 2bij and ⟨B(ei + ej), ei + ej⟩ = bii + bjj + 2bij which shows that aij = bij . Thus, A = B. We have Let A,B ∈ Rn×n be symmetric matrices. If ⟨Ax,x⟩ = ⟨Bx,x⟩ for all x ∈ R, then A = B. Problem 2.5 (Solution) a) Xt = 2Bt/4 is a BM: scaling property with c = 1/4, cf. 2.12. b) Yt = B2t −Bt is not a BM, the independent increments is clearly violated: E(Y2t − Yt)Yt = E(Y2tYt) −EY 2 t = E(B4t −B2t)(B2t −Bt) −E(B2t −Bt) (B1) = E(B4t −B2t)E(B2t −Bt) −E(B2t −Bt) (B1) = −E(B t ) = −t ≠ 0. c) Zt = √ tB1 is not a BM , the independent increments property is violated: E(Zt −Zs)Zs = ( √ t − √ s) √ sEB 1 = ( √ t − √ s) √ s ≠ 0.","PeriodicalId":269560,"journal":{"name":"Fundamentals of IoT and Wearable Technology Design","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Solution Manual\",\"authors\":\"R. Schilling\",\"doi\":\"10.1002/9781119617570.oth\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"alternative: Let (Xt)t∈I be a real-valued stochastic process which has a second moment (such that the covariance is defined!), set μt = EXt. For any finite set S ⊂ I we pick λs ∈ C, s ∈ S. Then ∑ s,t∈S Cov(Xs,Xt)λsλ̄t = ∑ s,t∈S E ((Xs − μs)(Xt − μt))λsλ̄t = E ⎛ ⎝ ∑ s,t∈S (Xs − μs)λs(Xt − μt)λt ⎞ ⎠ = E(∑ s∈S (Xs − μs)λs∑ t∈S (Xt − μt)λt) = E ⎛ ⎝ ∣∑ s∈S (Xs − μs)λs∣ ⎞ ⎠ ⩾ 0. Remark: Note that this alternative does not prove that the covariance is strictly positive definite. A standard counterexample is to take Xs ≡X. Problem 2.3 (Solution) These are direct & straightforward calculations. Problem 2.4 (Solution) Let ei = (0, . . . ,0,1 ́11111111111111111 ̧111111111111111111¶ i ,0 . . .) ∈ R be the ith standard unit vector. Then aii = ⟨Aei, ei⟩ = ⟨Bei, ei⟩ = bii. Moreover, for i ≠ j, we get by the symmetry of A and B ⟨A(ei + ej), ei + ej⟩ = aii + ajj + 2bij and ⟨B(ei + ej), ei + ej⟩ = bii + bjj + 2bij which shows that aij = bij . Thus, A = B. We have Let A,B ∈ Rn×n be symmetric matrices. If ⟨Ax,x⟩ = ⟨Bx,x⟩ for all x ∈ R, then A = B. Problem 2.5 (Solution) a) Xt = 2Bt/4 is a BM: scaling property with c = 1/4, cf. 2.12. b) Yt = B2t −Bt is not a BM, the independent increments is clearly violated: E(Y2t − Yt)Yt = E(Y2tYt) −EY 2 t = E(B4t −B2t)(B2t −Bt) −E(B2t −Bt) (B1) = E(B4t −B2t)E(B2t −Bt) −E(B2t −Bt) (B1) = −E(B t ) = −t ≠ 0. c) Zt = √ tB1 is not a BM , the independent increments property is violated: E(Zt −Zs)Zs = ( √ t − √ s) √ sEB 1 = ( √ t − √ s) √ s ≠ 0.\",\"PeriodicalId\":269560,\"journal\":{\"name\":\"Fundamentals of IoT and Wearable Technology Design\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamentals of IoT and Wearable Technology Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9781119617570.oth\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamentals of IoT and Wearable Technology Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119617570.oth","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
alternative: Let (Xt)t∈I be a real-valued stochastic process which has a second moment (such that the covariance is defined!), set μt = EXt. For any finite set S ⊂ I we pick λs ∈ C, s ∈ S. Then ∑ s,t∈S Cov(Xs,Xt)λsλ̄t = ∑ s,t∈S E ((Xs − μs)(Xt − μt))λsλ̄t = E ⎛ ⎝ ∑ s,t∈S (Xs − μs)λs(Xt − μt)λt ⎞ ⎠ = E(∑ s∈S (Xs − μs)λs∑ t∈S (Xt − μt)λt) = E ⎛ ⎝ ∣∑ s∈S (Xs − μs)λs∣ ⎞ ⎠ ⩾ 0. Remark: Note that this alternative does not prove that the covariance is strictly positive definite. A standard counterexample is to take Xs ≡X. Problem 2.3 (Solution) These are direct & straightforward calculations. Problem 2.4 (Solution) Let ei = (0, . . . ,0,1 ́11111111111111111 ̧111111111111111111¶ i ,0 . . .) ∈ R be the ith standard unit vector. Then aii = ⟨Aei, ei⟩ = ⟨Bei, ei⟩ = bii. Moreover, for i ≠ j, we get by the symmetry of A and B ⟨A(ei + ej), ei + ej⟩ = aii + ajj + 2bij and ⟨B(ei + ej), ei + ej⟩ = bii + bjj + 2bij which shows that aij = bij . Thus, A = B. We have Let A,B ∈ Rn×n be symmetric matrices. If ⟨Ax,x⟩ = ⟨Bx,x⟩ for all x ∈ R, then A = B. Problem 2.5 (Solution) a) Xt = 2Bt/4 is a BM: scaling property with c = 1/4, cf. 2.12. b) Yt = B2t −Bt is not a BM, the independent increments is clearly violated: E(Y2t − Yt)Yt = E(Y2tYt) −EY 2 t = E(B4t −B2t)(B2t −Bt) −E(B2t −Bt) (B1) = E(B4t −B2t)E(B2t −Bt) −E(B2t −Bt) (B1) = −E(B t ) = −t ≠ 0. c) Zt = √ tB1 is not a BM , the independent increments property is violated: E(Zt −Zs)Zs = ( √ t − √ s) √ sEB 1 = ( √ t − √ s) √ s ≠ 0.