解决方案手册

R. Schilling
{"title":"解决方案手册","authors":"R. Schilling","doi":"10.1002/9781119617570.oth","DOIUrl":null,"url":null,"abstract":"alternative: Let (Xt)t∈I be a real-valued stochastic process which has a second moment (such that the covariance is defined!), set μt = EXt. For any finite set S ⊂ I we pick λs ∈ C, s ∈ S. Then ∑ s,t∈S Cov(Xs,Xt)λsλ̄t = ∑ s,t∈S E ((Xs − μs)(Xt − μt))λsλ̄t = E ⎛ ⎝ ∑ s,t∈S (Xs − μs)λs(Xt − μt)λt ⎞ ⎠ = E(∑ s∈S (Xs − μs)λs∑ t∈S (Xt − μt)λt) = E ⎛ ⎝ ∣∑ s∈S (Xs − μs)λs∣ ⎞ ⎠ ⩾ 0. Remark: Note that this alternative does not prove that the covariance is strictly positive definite. A standard counterexample is to take Xs ≡X. Problem 2.3 (Solution) These are direct & straightforward calculations. Problem 2.4 (Solution) Let ei = (0, . . . ,0,1 ́11111111111111111 ̧111111111111111111¶ i ,0 . . .) ∈ R be the ith standard unit vector. Then aii = ⟨Aei, ei⟩ = ⟨Bei, ei⟩ = bii. Moreover, for i ≠ j, we get by the symmetry of A and B ⟨A(ei + ej), ei + ej⟩ = aii + ajj + 2bij and ⟨B(ei + ej), ei + ej⟩ = bii + bjj + 2bij which shows that aij = bij . Thus, A = B. We have Let A,B ∈ Rn×n be symmetric matrices. If ⟨Ax,x⟩ = ⟨Bx,x⟩ for all x ∈ R, then A = B. Problem 2.5 (Solution) a) Xt = 2Bt/4 is a BM: scaling property with c = 1/4, cf. 2.12. b) Yt = B2t −Bt is not a BM, the independent increments is clearly violated: E(Y2t − Yt)Yt = E(Y2tYt) −EY 2 t = E(B4t −B2t)(B2t −Bt) −E(B2t −Bt) (B1) = E(B4t −B2t)E(B2t −Bt) −E(B2t −Bt) (B1) = −E(B t ) = −t ≠ 0. c) Zt = √ tB1 is not a BM , the independent increments property is violated: E(Zt −Zs)Zs = ( √ t − √ s) √ sEB 1 = ( √ t − √ s) √ s ≠ 0.","PeriodicalId":269560,"journal":{"name":"Fundamentals of IoT and Wearable Technology Design","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Solution Manual\",\"authors\":\"R. Schilling\",\"doi\":\"10.1002/9781119617570.oth\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"alternative: Let (Xt)t∈I be a real-valued stochastic process which has a second moment (such that the covariance is defined!), set μt = EXt. For any finite set S ⊂ I we pick λs ∈ C, s ∈ S. Then ∑ s,t∈S Cov(Xs,Xt)λsλ̄t = ∑ s,t∈S E ((Xs − μs)(Xt − μt))λsλ̄t = E ⎛ ⎝ ∑ s,t∈S (Xs − μs)λs(Xt − μt)λt ⎞ ⎠ = E(∑ s∈S (Xs − μs)λs∑ t∈S (Xt − μt)λt) = E ⎛ ⎝ ∣∑ s∈S (Xs − μs)λs∣ ⎞ ⎠ ⩾ 0. Remark: Note that this alternative does not prove that the covariance is strictly positive definite. A standard counterexample is to take Xs ≡X. Problem 2.3 (Solution) These are direct & straightforward calculations. Problem 2.4 (Solution) Let ei = (0, . . . ,0,1 ́11111111111111111 ̧111111111111111111¶ i ,0 . . .) ∈ R be the ith standard unit vector. Then aii = ⟨Aei, ei⟩ = ⟨Bei, ei⟩ = bii. Moreover, for i ≠ j, we get by the symmetry of A and B ⟨A(ei + ej), ei + ej⟩ = aii + ajj + 2bij and ⟨B(ei + ej), ei + ej⟩ = bii + bjj + 2bij which shows that aij = bij . Thus, A = B. We have Let A,B ∈ Rn×n be symmetric matrices. If ⟨Ax,x⟩ = ⟨Bx,x⟩ for all x ∈ R, then A = B. Problem 2.5 (Solution) a) Xt = 2Bt/4 is a BM: scaling property with c = 1/4, cf. 2.12. b) Yt = B2t −Bt is not a BM, the independent increments is clearly violated: E(Y2t − Yt)Yt = E(Y2tYt) −EY 2 t = E(B4t −B2t)(B2t −Bt) −E(B2t −Bt) (B1) = E(B4t −B2t)E(B2t −Bt) −E(B2t −Bt) (B1) = −E(B t ) = −t ≠ 0. c) Zt = √ tB1 is not a BM , the independent increments property is violated: E(Zt −Zs)Zs = ( √ t − √ s) √ sEB 1 = ( √ t − √ s) √ s ≠ 0.\",\"PeriodicalId\":269560,\"journal\":{\"name\":\"Fundamentals of IoT and Wearable Technology Design\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamentals of IoT and Wearable Technology Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/9781119617570.oth\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamentals of IoT and Wearable Technology Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119617570.oth","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

选择:让t∈(Xt)我是一个实值随机过程的二阶矩(协方差的定义是这样!),设置μt = EXt。对于任何有限集合S⊂我我们选λ∈C, S∈然后∑年代,t∈S x (x, Xt) Sλλ̄t =∑年代,t∈S E ((Xs−μS) (Xt−μt)) Sλλ̄t = E⎛⎝∑年代,t∈S (x−μS)λ年代(Xt−μt)λt⎞⎠= E(∑∈年代(Xs−μS)λ∈∑t年代(Xt−μt)λt) = E⎛⎝∣∑∈年代(Xs−μS)λ年代∣⎞⎠⩾0。注:注意,这个替代方案并不能证明协方差是严格的正定。一个标准的反例是取X≡X。问题2.3(解决方案)这些都是直接和简单的计算。第2.4题(解)设ei =(0,…),0,1 ` 111111111111111111111111111111111111111111111111111111111111111111111111¶i,0 .)∈R是第i个标准单位向量。那么aii =⟨Aei, ei⟩=⟨Bei, ei⟩= bii。此外,对于i≠j,我们通过A和B的对称性得到⟨A(ei + ej), ei + ej⟩= aii + ajj + 2bij和⟨B(ei + ej), ei + ej⟩= bii + bjj + 2bij,这表明aij = bij。设A,B∈Rn×n为对称矩阵。如果⟨Ax,x⟩=⟨Bx,x⟩对于所有x∈R,则A = b。问题2.5(解)A) Xt = 2Bt/4是一个BM: c = 1/4的缩放性质,参见2.12。b) Yt = B2t−Bt不是BM,独立增量明显违反:E(Y2t−Yt)Yt = E(Y2tYt)−EY 2t = E(B4t−B2t)(B2t−Bt)−E(B2t−Bt) (B1) = E(B4t−B2t)E(B2t−Bt)−E(B2t−Bt) (B1) =−E(B2t−Bt) =−t≠0。c) Zt =√tB1不是BM,则违反独立增量性质:E(Zt−Zs)Zs =(√t−√s)√sEB 1 =(√t−√s)√s≠0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution Manual
alternative: Let (Xt)t∈I be a real-valued stochastic process which has a second moment (such that the covariance is defined!), set μt = EXt. For any finite set S ⊂ I we pick λs ∈ C, s ∈ S. Then ∑ s,t∈S Cov(Xs,Xt)λsλ̄t = ∑ s,t∈S E ((Xs − μs)(Xt − μt))λsλ̄t = E ⎛ ⎝ ∑ s,t∈S (Xs − μs)λs(Xt − μt)λt ⎞ ⎠ = E(∑ s∈S (Xs − μs)λs∑ t∈S (Xt − μt)λt) = E ⎛ ⎝ ∣∑ s∈S (Xs − μs)λs∣ ⎞ ⎠ ⩾ 0. Remark: Note that this alternative does not prove that the covariance is strictly positive definite. A standard counterexample is to take Xs ≡X. Problem 2.3 (Solution) These are direct & straightforward calculations. Problem 2.4 (Solution) Let ei = (0, . . . ,0,1 ́11111111111111111 ̧111111111111111111¶ i ,0 . . .) ∈ R be the ith standard unit vector. Then aii = ⟨Aei, ei⟩ = ⟨Bei, ei⟩ = bii. Moreover, for i ≠ j, we get by the symmetry of A and B ⟨A(ei + ej), ei + ej⟩ = aii + ajj + 2bij and ⟨B(ei + ej), ei + ej⟩ = bii + bjj + 2bij which shows that aij = bij . Thus, A = B. We have Let A,B ∈ Rn×n be symmetric matrices. If ⟨Ax,x⟩ = ⟨Bx,x⟩ for all x ∈ R, then A = B. Problem 2.5 (Solution) a) Xt = 2Bt/4 is a BM: scaling property with c = 1/4, cf. 2.12. b) Yt = B2t −Bt is not a BM, the independent increments is clearly violated: E(Y2t − Yt)Yt = E(Y2tYt) −EY 2 t = E(B4t −B2t)(B2t −Bt) −E(B2t −Bt) (B1) = E(B4t −B2t)E(B2t −Bt) −E(B2t −Bt) (B1) = −E(B t ) = −t ≠ 0. c) Zt = √ tB1 is not a BM , the independent increments property is violated: E(Zt −Zs)Zs = ( √ t − √ s) √ sEB 1 = ( √ t − √ s) √ s ≠ 0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信