考虑多时间滞后的人工神经网络短期光伏发电预测

Muhammad Murtadha Othman, Muhamad Hafizuddin Idris Ramlee, M. H. Harun, I. Musirin
{"title":"考虑多时间滞后的人工神经网络短期光伏发电预测","authors":"Muhammad Murtadha Othman, Muhamad Hafizuddin Idris Ramlee, M. H. Harun, I. Musirin","doi":"10.1109/ICESI.2019.8862996","DOIUrl":null,"url":null,"abstract":"This paper presents the artificial neural network (ANN) used to perform the short-term photovoltaic power forecasting (STPPF) for the next 24 hours. The input data of ANN is comprising with the multiple time lags of hourly data of power, current, temperature, solar irradiance and hour that have been denoised by using the wavelet decomposition. The multiple time lags are used to improve the input data while wavelet decomposition removes the noises available in the data which will then significantly improve the STPPF results. The data of a solar photovoltaic (PV) system in the year 2015 and 2016 obtained from the Green Energy Research (GERC), UiTM, Shah Alam, Malaysia. The results have shown that the ANN provides relatively accurate results of STPPF and able to forecast the PV output power for the next 24 hours with less error.","PeriodicalId":249316,"journal":{"name":"2019 International Conference on Engineering, Science, and Industrial Applications (ICESI)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Short-Term Photovoltaic Power Forecasting Using Artificial Neural Network Considering Multiple Time Lags\",\"authors\":\"Muhammad Murtadha Othman, Muhamad Hafizuddin Idris Ramlee, M. H. Harun, I. Musirin\",\"doi\":\"10.1109/ICESI.2019.8862996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the artificial neural network (ANN) used to perform the short-term photovoltaic power forecasting (STPPF) for the next 24 hours. The input data of ANN is comprising with the multiple time lags of hourly data of power, current, temperature, solar irradiance and hour that have been denoised by using the wavelet decomposition. The multiple time lags are used to improve the input data while wavelet decomposition removes the noises available in the data which will then significantly improve the STPPF results. The data of a solar photovoltaic (PV) system in the year 2015 and 2016 obtained from the Green Energy Research (GERC), UiTM, Shah Alam, Malaysia. The results have shown that the ANN provides relatively accurate results of STPPF and able to forecast the PV output power for the next 24 hours with less error.\",\"PeriodicalId\":249316,\"journal\":{\"name\":\"2019 International Conference on Engineering, Science, and Industrial Applications (ICESI)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Engineering, Science, and Industrial Applications (ICESI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICESI.2019.8862996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Engineering, Science, and Industrial Applications (ICESI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICESI.2019.8862996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了利用人工神经网络(ANN)对未来24小时的光伏发电电量进行短期预测。人工神经网络的输入数据由功率、电流、温度、太阳辐照度和小时等小时数据的多个时间滞后组成,这些数据经过小波分解去噪。多重时间滞后用于改善输入数据,而小波分解去除数据中的可用噪声,从而显着改善STPPF结果。2015年和2016年太阳能光伏(PV)系统的数据来自马来西亚沙阿南的绿色能源研究(GERC)。结果表明,人工神经网络提供了相对准确的STPPF结果,能够以较小的误差预测未来24小时的光伏输出功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-Term Photovoltaic Power Forecasting Using Artificial Neural Network Considering Multiple Time Lags
This paper presents the artificial neural network (ANN) used to perform the short-term photovoltaic power forecasting (STPPF) for the next 24 hours. The input data of ANN is comprising with the multiple time lags of hourly data of power, current, temperature, solar irradiance and hour that have been denoised by using the wavelet decomposition. The multiple time lags are used to improve the input data while wavelet decomposition removes the noises available in the data which will then significantly improve the STPPF results. The data of a solar photovoltaic (PV) system in the year 2015 and 2016 obtained from the Green Energy Research (GERC), UiTM, Shah Alam, Malaysia. The results have shown that the ANN provides relatively accurate results of STPPF and able to forecast the PV output power for the next 24 hours with less error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信