混合云环境下基于粒子群优化模拟退火算法的任务调度研究

Bohuai Xiao, X. Xie, D. Han
{"title":"混合云环境下基于粒子群优化模拟退火算法的任务调度研究","authors":"Bohuai Xiao, X. Xie, D. Han","doi":"10.1145/3480571.3480631","DOIUrl":null,"url":null,"abstract":"In recent years, cloud computing has developed rapidly. Some problems exist in traditional schedule, such as inefficient task management and unreasonable resource allocation. To solve these problems, a particle swarm simulated annealing (PSO-SA) algorithm is proposed, which improves the inertia weight and learning factor, and redefines the adaptability function, thus effectively improving the task management in the hybrid cloud environment, and further improving the rational allocation of resources. The simulation experiments on the number of tasks and resources show that the performance of PSO-SA algorithm is enhanced after optimization.","PeriodicalId":113723,"journal":{"name":"Proceedings of the 6th International Conference on Intelligent Information Processing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Task Scheduling Based on Particle Swarm Optimization Simulated Annealing Algorithm in Hybrid Cloud Environment\",\"authors\":\"Bohuai Xiao, X. Xie, D. Han\",\"doi\":\"10.1145/3480571.3480631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, cloud computing has developed rapidly. Some problems exist in traditional schedule, such as inefficient task management and unreasonable resource allocation. To solve these problems, a particle swarm simulated annealing (PSO-SA) algorithm is proposed, which improves the inertia weight and learning factor, and redefines the adaptability function, thus effectively improving the task management in the hybrid cloud environment, and further improving the rational allocation of resources. The simulation experiments on the number of tasks and resources show that the performance of PSO-SA algorithm is enhanced after optimization.\",\"PeriodicalId\":113723,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Intelligent Information Processing\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Intelligent Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3480571.3480631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Intelligent Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3480571.3480631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,云计算发展迅速。传统调度存在着任务管理效率低下、资源分配不合理等问题。针对这些问题,提出了粒子群模拟退火(PSO-SA)算法,改进了惯性权值和学习因子,重新定义了自适应函数,从而有效改进了混合云环境下的任务管理,进一步提高了资源的合理分配。在任务数和资源数上的仿真实验表明,优化后的PSO-SA算法的性能得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Task Scheduling Based on Particle Swarm Optimization Simulated Annealing Algorithm in Hybrid Cloud Environment
In recent years, cloud computing has developed rapidly. Some problems exist in traditional schedule, such as inefficient task management and unreasonable resource allocation. To solve these problems, a particle swarm simulated annealing (PSO-SA) algorithm is proposed, which improves the inertia weight and learning factor, and redefines the adaptability function, thus effectively improving the task management in the hybrid cloud environment, and further improving the rational allocation of resources. The simulation experiments on the number of tasks and resources show that the performance of PSO-SA algorithm is enhanced after optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信