基于卷积神经网络的原始HRCT图像肺气肿识别

E. Karabulut, T. Ibrikci
{"title":"基于卷积神经网络的原始HRCT图像肺气肿识别","authors":"E. Karabulut, T. Ibrikci","doi":"10.1109/ELECO.2015.7394441","DOIUrl":null,"url":null,"abstract":"Emphysema is a chronic lung disease that causes breathlessness. HRCT is the reliable way of visual demonstration of emphysema in patients. The fact that dangerous and widespread nature of the disease require immediate attention of a doctor with a good degree of specialized anatomical knowledge. This necessitates the development of computer-based automatic identification system. This study aims to investigate the deep learning solution for discriminating emphysema subtypes by using raw pixels of input HRCT images of lung. Convolutional Neural Network (CNN) is used as the deep learning method for experiments carried out in the Caffe deep learning framework. As a result, promising percentage of accuracy is obtained besides low processing time.","PeriodicalId":369687,"journal":{"name":"2015 9th International Conference on Electrical and Electronics Engineering (ELECO)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Emphysema discrimination from raw HRCT images by convolutional neural networks\",\"authors\":\"E. Karabulut, T. Ibrikci\",\"doi\":\"10.1109/ELECO.2015.7394441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emphysema is a chronic lung disease that causes breathlessness. HRCT is the reliable way of visual demonstration of emphysema in patients. The fact that dangerous and widespread nature of the disease require immediate attention of a doctor with a good degree of specialized anatomical knowledge. This necessitates the development of computer-based automatic identification system. This study aims to investigate the deep learning solution for discriminating emphysema subtypes by using raw pixels of input HRCT images of lung. Convolutional Neural Network (CNN) is used as the deep learning method for experiments carried out in the Caffe deep learning framework. As a result, promising percentage of accuracy is obtained besides low processing time.\",\"PeriodicalId\":369687,\"journal\":{\"name\":\"2015 9th International Conference on Electrical and Electronics Engineering (ELECO)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 9th International Conference on Electrical and Electronics Engineering (ELECO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELECO.2015.7394441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 9th International Conference on Electrical and Electronics Engineering (ELECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELECO.2015.7394441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

肺气肿是一种导致呼吸困难的慢性肺部疾病。HRCT是肺气肿患者可靠的视觉显示方法。事实上,这种疾病的危险性和广广性要求具有良好专业解剖学知识的医生立即予以关注。这就要求开发基于计算机的自动识别系统。本研究旨在探讨利用输入肺HRCT图像的原始像素来识别肺气肿亚型的深度学习解决方案。在Caffe深度学习框架中进行的实验使用卷积神经网络(CNN)作为深度学习方法。结果表明,除处理时间短外,还能获得较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emphysema discrimination from raw HRCT images by convolutional neural networks
Emphysema is a chronic lung disease that causes breathlessness. HRCT is the reliable way of visual demonstration of emphysema in patients. The fact that dangerous and widespread nature of the disease require immediate attention of a doctor with a good degree of specialized anatomical knowledge. This necessitates the development of computer-based automatic identification system. This study aims to investigate the deep learning solution for discriminating emphysema subtypes by using raw pixels of input HRCT images of lung. Convolutional Neural Network (CNN) is used as the deep learning method for experiments carried out in the Caffe deep learning framework. As a result, promising percentage of accuracy is obtained besides low processing time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信