特征诱导子群

R. Merris, W. Watkins
{"title":"特征诱导子群","authors":"R. Merris, W. Watkins","doi":"10.6028/JRES.077B.010","DOIUrl":null,"url":null,"abstract":"One easil y sees that Cx is the norm al s ubgroup of C co ns is ting of those ele me nts represe nted by scalars in {A (g )}. Moreove r, A = xlx(l) is a linear c haracte r on Cx whi ch is in vari a nt under conjugation b y eleme nts of C . we call C x the subgroup induced by X. THEOREM 1 : We have X (1) 2 :s:; [G : Gx], with equality if and only if X is the only irreducible character of G whose restriction to Gx contains A as a component. PROOF: Let '11.(; be the charac te r of C induced b y A. The n, b y the Froben ius Reciprocity Theore m, X occurs in '11.(; exactly x(l) tim es. Moreover , if'Y/ is a n irreduc ible charac te r on C whose restri ction to C x conta ins A, th en 'Y/ E '11. (;. But, the degree of '11.. (; is [G : G xl W e might point out th a t if'Y/ is an irredu c ible charac ter on C such that A E 'Y/ I Cx, then 'Y/ I Cx = 'Y/ (1) '11.[8 , p. 53J. In partic ular , Cx C CT) . COROLLARY 1: Let g E G be arbitrary. Then A can be extended to a character of < Gx, g), the group generatedbyG x and g.lfX(I )2 = [ G: Gx > 1,thenA cannot beextendedtoG. PROOF: T he firs t s ta te me nt follows because Gx is normal and A is invariant. The second follows from Theore m l. W e now give another proof of Theore m 1 whic h leads to an appa re ntl y diffe re nt case of equality. First, define th e support of X to be supp X = {g E C : X(g ) 0/= O}. TH EOREM 1': We have X (l) 2 :s:; [G : Gx], with equality if and only if supp X = Gx.","PeriodicalId":166823,"journal":{"name":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1973-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Character induced subgroups\",\"authors\":\"R. Merris, W. Watkins\",\"doi\":\"10.6028/JRES.077B.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One easil y sees that Cx is the norm al s ubgroup of C co ns is ting of those ele me nts represe nted by scalars in {A (g )}. Moreove r, A = xlx(l) is a linear c haracte r on Cx whi ch is in vari a nt under conjugation b y eleme nts of C . we call C x the subgroup induced by X. THEOREM 1 : We have X (1) 2 :s:; [G : Gx], with equality if and only if X is the only irreducible character of G whose restriction to Gx contains A as a component. PROOF: Let '11.(; be the charac te r of C induced b y A. The n, b y the Froben ius Reciprocity Theore m, X occurs in '11.(; exactly x(l) tim es. Moreover , if'Y/ is a n irreduc ible charac te r on C whose restri ction to C x conta ins A, th en 'Y/ E '11. (;. But, the degree of '11.. (; is [G : G xl W e might point out th a t if'Y/ is an irredu c ible charac ter on C such that A E 'Y/ I Cx, then 'Y/ I Cx = 'Y/ (1) '11.[8 , p. 53J. In partic ular , Cx C CT) . COROLLARY 1: Let g E G be arbitrary. Then A can be extended to a character of < Gx, g), the group generatedbyG x and g.lfX(I )2 = [ G: Gx > 1,thenA cannot beextendedtoG. PROOF: T he firs t s ta te me nt follows because Gx is normal and A is invariant. The second follows from Theore m l. W e now give another proof of Theore m 1 whic h leads to an appa re ntl y diffe re nt case of equality. First, define th e support of X to be supp X = {g E C : X(g ) 0/= O}. TH EOREM 1': We have X (l) 2 :s:; [G : Gx], with equality if and only if supp X = Gx.\",\"PeriodicalId\":166823,\"journal\":{\"name\":\"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1973-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/JRES.077B.010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.077B.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

可以很容易地看出,Cx是C的范数子群,它是{A (g)}中标量表示的那些子群的集合。此外,r, A = xlx(l)是Cx上的一个线性c特征r,它在c的y个元素的共轭作用下变化为A nt。我们称C x为x引出的子群。定理1:我们有x (1) 2:s;[G: Gx],当且仅当X是G中唯一的不可约字符,且其对Gx的限制包含A作为分量。证明:让我们……是由a引起的C的r的特征。根据frobenius互易性定理m, X的n, b出现在2011年。正好是x(l) times。此外,如果Y/是C上的一个不可约的字符,其对C x的约束包含a,则Y/ E '11。(,。但是,2011年的程度……(;我们可以指出,如果'Y/是c上的不可约字符,使得a e 'Y/ I Cx,则'Y/ I Cx = 'Y/ (1)”11。[8] [j]。特别是,Cx C CT)。推论1:假设重力是任意的。则A可以扩展到< Gx, g),由Gx和g.生成的群lfx (I)2 = [g: Gx > 1],则A不能扩展到g。证明:第一个T是后面的T,因为Gx是正规的,而A是不变的。第二个是由定理m1推导出来的,我们现在给出定理m1的另一个证明,它会引出一个完全不同的等式。首先,定义X的支持为supp X = {g e C: X(g) 0/= 0}。我们有X (1) 2:s:;[G: Gx],当且仅当供给X = Gx。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Character induced subgroups
One easil y sees that Cx is the norm al s ubgroup of C co ns is ting of those ele me nts represe nted by scalars in {A (g )}. Moreove r, A = xlx(l) is a linear c haracte r on Cx whi ch is in vari a nt under conjugation b y eleme nts of C . we call C x the subgroup induced by X. THEOREM 1 : We have X (1) 2 :s:; [G : Gx], with equality if and only if X is the only irreducible character of G whose restriction to Gx contains A as a component. PROOF: Let '11.(; be the charac te r of C induced b y A. The n, b y the Froben ius Reciprocity Theore m, X occurs in '11.(; exactly x(l) tim es. Moreover , if'Y/ is a n irreduc ible charac te r on C whose restri ction to C x conta ins A, th en 'Y/ E '11. (;. But, the degree of '11.. (; is [G : G xl W e might point out th a t if'Y/ is an irredu c ible charac ter on C such that A E 'Y/ I Cx, then 'Y/ I Cx = 'Y/ (1) '11.[8 , p. 53J. In partic ular , Cx C CT) . COROLLARY 1: Let g E G be arbitrary. Then A can be extended to a character of < Gx, g), the group generatedbyG x and g.lfX(I )2 = [ G: Gx > 1,thenA cannot beextendedtoG. PROOF: T he firs t s ta te me nt follows because Gx is normal and A is invariant. The second follows from Theore m l. W e now give another proof of Theore m 1 whic h leads to an appa re ntl y diffe re nt case of equality. First, define th e support of X to be supp X = {g E C : X(g ) 0/= O}. TH EOREM 1': We have X (l) 2 :s:; [G : Gx], with equality if and only if supp X = Gx.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信