G. Savelli, M. Plissonnier, J. Bablet, C. Salvi, J. Fournier
{"title":"铋锑材料热电器件的实现与优化","authors":"G. Savelli, M. Plissonnier, J. Bablet, C. Salvi, J. Fournier","doi":"10.1109/ICT.2006.331280","DOIUrl":null,"url":null,"abstract":"In recent years, microelectronics has contributed to the development of complex and varied technologies. Many of these technologies can be applied successfully to realize Seebeck micro generators: photolithography and deposition methods allow the elaboration of thin thermoelectric structures at the micro-scale level. Our goal is to scavenge energy by developing a miniature power source for operating electronic components. First Bi and Sb micro-devices on glass substrate have been manufactured with an area of 1cm2 including more than one hundred junctions. We have optimized each step of the manufacturing process: photolithography, deposition process, annealing conditions and metallic connections. Three different device structures have been realized with differing micro-line dimensions. Each device performance will be reviewed and discussed as a function of their design structure","PeriodicalId":346555,"journal":{"name":"2006 25th International Conference on Thermoelectrics","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Realization and optimization of thermoelectric devices using bismuth and antimony materials\",\"authors\":\"G. Savelli, M. Plissonnier, J. Bablet, C. Salvi, J. Fournier\",\"doi\":\"10.1109/ICT.2006.331280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, microelectronics has contributed to the development of complex and varied technologies. Many of these technologies can be applied successfully to realize Seebeck micro generators: photolithography and deposition methods allow the elaboration of thin thermoelectric structures at the micro-scale level. Our goal is to scavenge energy by developing a miniature power source for operating electronic components. First Bi and Sb micro-devices on glass substrate have been manufactured with an area of 1cm2 including more than one hundred junctions. We have optimized each step of the manufacturing process: photolithography, deposition process, annealing conditions and metallic connections. Three different device structures have been realized with differing micro-line dimensions. Each device performance will be reviewed and discussed as a function of their design structure\",\"PeriodicalId\":346555,\"journal\":{\"name\":\"2006 25th International Conference on Thermoelectrics\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 25th International Conference on Thermoelectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.2006.331280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 25th International Conference on Thermoelectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2006.331280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Realization and optimization of thermoelectric devices using bismuth and antimony materials
In recent years, microelectronics has contributed to the development of complex and varied technologies. Many of these technologies can be applied successfully to realize Seebeck micro generators: photolithography and deposition methods allow the elaboration of thin thermoelectric structures at the micro-scale level. Our goal is to scavenge energy by developing a miniature power source for operating electronic components. First Bi and Sb micro-devices on glass substrate have been manufactured with an area of 1cm2 including more than one hundred junctions. We have optimized each step of the manufacturing process: photolithography, deposition process, annealing conditions and metallic connections. Three different device structures have been realized with differing micro-line dimensions. Each device performance will be reviewed and discussed as a function of their design structure