K. Kwiat, Alan D. Taylor, W. Zwicker, Daniel Hill, Sean Wetzonis, Shangping Ren
{"title":"二进制投票算法在容错和安全计算中的应用分析","authors":"K. Kwiat, Alan D. Taylor, W. Zwicker, Daniel Hill, Sean Wetzonis, Shangping Ren","doi":"10.1109/ICCES.2010.5674867","DOIUrl":null,"url":null,"abstract":"We examine three binary voting algorithms used with computer replication for fault tolerance and separately observe the resultant reliability and security. We offer insights to answer the question: Can a voting algorithm provide a system with both security and reliability? We show that while random dictator (i.e., randomly choosing one of the replicas) provides good security and majority rule yields good fault tolerance neither is effective in both. We present the random troika (a subset of 3 replicas) as an effective combination of fault-tolerant and secure computing.","PeriodicalId":124411,"journal":{"name":"The 2010 International Conference on Computer Engineering & Systems","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Analysis of binary voting algorithms for use in fault-tolerant and secure computing\",\"authors\":\"K. Kwiat, Alan D. Taylor, W. Zwicker, Daniel Hill, Sean Wetzonis, Shangping Ren\",\"doi\":\"10.1109/ICCES.2010.5674867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine three binary voting algorithms used with computer replication for fault tolerance and separately observe the resultant reliability and security. We offer insights to answer the question: Can a voting algorithm provide a system with both security and reliability? We show that while random dictator (i.e., randomly choosing one of the replicas) provides good security and majority rule yields good fault tolerance neither is effective in both. We present the random troika (a subset of 3 replicas) as an effective combination of fault-tolerant and secure computing.\",\"PeriodicalId\":124411,\"journal\":{\"name\":\"The 2010 International Conference on Computer Engineering & Systems\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2010 International Conference on Computer Engineering & Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCES.2010.5674867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2010 International Conference on Computer Engineering & Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2010.5674867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of binary voting algorithms for use in fault-tolerant and secure computing
We examine three binary voting algorithms used with computer replication for fault tolerance and separately observe the resultant reliability and security. We offer insights to answer the question: Can a voting algorithm provide a system with both security and reliability? We show that while random dictator (i.e., randomly choosing one of the replicas) provides good security and majority rule yields good fault tolerance neither is effective in both. We present the random troika (a subset of 3 replicas) as an effective combination of fault-tolerant and secure computing.