基于新闻的国家基本面指数

Andras Fulop, Z. Kocsis
{"title":"基于新闻的国家基本面指数","authors":"Andras Fulop, Z. Kocsis","doi":"10.2139/ssrn.3132278","DOIUrl":null,"url":null,"abstract":"We propose a novel method to extract information on macro fundamentals based on regular expressions and compare its performance vis-a-vis two popular alternatives in the current finance literature based on predefined dictionaries and supervised learning techniques. We create news indices about fundamentals according to these techniques on a news dataset by Reuters and compare how the techniques fare at (i) capturing observed economic surprises (macro announcements compared to Bloomberg survey expectations) and (ii) correctly predicting labels on a manually classified test sample of the news text corpus. We demonstrate that our methodology is better able to identify and discriminate among fundamentals than the alternative techniques. We further show the benefit of our fundamental news indices in an econometric application that investigates the fundamental content of asset prices in the sovereign credit risk arena.","PeriodicalId":331527,"journal":{"name":"WGSRN: Data Collection & Empirical Methods (Topic)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"News-Based Indices on Country Fundamentals\",\"authors\":\"Andras Fulop, Z. Kocsis\",\"doi\":\"10.2139/ssrn.3132278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel method to extract information on macro fundamentals based on regular expressions and compare its performance vis-a-vis two popular alternatives in the current finance literature based on predefined dictionaries and supervised learning techniques. We create news indices about fundamentals according to these techniques on a news dataset by Reuters and compare how the techniques fare at (i) capturing observed economic surprises (macro announcements compared to Bloomberg survey expectations) and (ii) correctly predicting labels on a manually classified test sample of the news text corpus. We demonstrate that our methodology is better able to identify and discriminate among fundamentals than the alternative techniques. We further show the benefit of our fundamental news indices in an econometric application that investigates the fundamental content of asset prices in the sovereign credit risk arena.\",\"PeriodicalId\":331527,\"journal\":{\"name\":\"WGSRN: Data Collection & Empirical Methods (Topic)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WGSRN: Data Collection & Empirical Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3132278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WGSRN: Data Collection & Empirical Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3132278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于正则表达式提取宏观基本面信息的新方法,并将其与当前金融文献中基于预定义字典和监督学习技术的两种流行替代方法进行了性能比较。我们根据这些技术在路透社的新闻数据集上创建了关于基本面的新闻指数,并比较了这些技术在以下方面的表现:(i)捕捉观察到的经济意外(与彭博调查预期相比的宏观公告)和(ii)正确预测新闻文本语料库手动分类测试样本上的标签。我们证明,我们的方法能够更好地识别和区分基本面比替代技术。我们进一步在计量经济学应用中展示了我们的基本新闻指数的好处,该应用调查了主权信用风险领域资产价格的基本内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
News-Based Indices on Country Fundamentals
We propose a novel method to extract information on macro fundamentals based on regular expressions and compare its performance vis-a-vis two popular alternatives in the current finance literature based on predefined dictionaries and supervised learning techniques. We create news indices about fundamentals according to these techniques on a news dataset by Reuters and compare how the techniques fare at (i) capturing observed economic surprises (macro announcements compared to Bloomberg survey expectations) and (ii) correctly predicting labels on a manually classified test sample of the news text corpus. We demonstrate that our methodology is better able to identify and discriminate among fundamentals than the alternative techniques. We further show the benefit of our fundamental news indices in an econometric application that investigates the fundamental content of asset prices in the sovereign credit risk arena.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信