{"title":"厌氧光合作用及其在火星表面创造生物圈的潜力","authors":"F. Mousavi","doi":"10.30699/jtae.2023.7.2.5","DOIUrl":null,"url":null,"abstract":"The atmosphere of the Red Planet or Mars contains 95% of carbon dioxide, 3% of nitrogen, 1.6% of argon and only a small amount of oxygen, and in terms of concentration is about one percent of the planet's atmosphere, which makes it virtually impossible for humans to live and survive on Mars. Therefore, it is necessary to find a solution that can provide the necessary oxygen for the survival of living organisms, especially humans, in the Martian atmosphere. Photosynthesis is the most important biochemical reaction on which almost all life depends. This complex process occurs in higher plants, algae and some bacteria such as cyanobacteria. Due to the very low percentage of oxygen in the Martian atmosphere, it seems that the use of photosynthetic species that are anaerobic and tolerant of adverse ecological conditions such as cyanobacteria can provide the oxygen needed by the Red Planet.","PeriodicalId":412927,"journal":{"name":"Technology in Aerospace Engineering","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anaerobic Photosynthesizers and their Potential to Create a Biosphere on the Surface of the Red Planet\",\"authors\":\"F. Mousavi\",\"doi\":\"10.30699/jtae.2023.7.2.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The atmosphere of the Red Planet or Mars contains 95% of carbon dioxide, 3% of nitrogen, 1.6% of argon and only a small amount of oxygen, and in terms of concentration is about one percent of the planet's atmosphere, which makes it virtually impossible for humans to live and survive on Mars. Therefore, it is necessary to find a solution that can provide the necessary oxygen for the survival of living organisms, especially humans, in the Martian atmosphere. Photosynthesis is the most important biochemical reaction on which almost all life depends. This complex process occurs in higher plants, algae and some bacteria such as cyanobacteria. Due to the very low percentage of oxygen in the Martian atmosphere, it seems that the use of photosynthetic species that are anaerobic and tolerant of adverse ecological conditions such as cyanobacteria can provide the oxygen needed by the Red Planet.\",\"PeriodicalId\":412927,\"journal\":{\"name\":\"Technology in Aerospace Engineering\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technology in Aerospace Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30699/jtae.2023.7.2.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology in Aerospace Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30699/jtae.2023.7.2.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Anaerobic Photosynthesizers and their Potential to Create a Biosphere on the Surface of the Red Planet
The atmosphere of the Red Planet or Mars contains 95% of carbon dioxide, 3% of nitrogen, 1.6% of argon and only a small amount of oxygen, and in terms of concentration is about one percent of the planet's atmosphere, which makes it virtually impossible for humans to live and survive on Mars. Therefore, it is necessary to find a solution that can provide the necessary oxygen for the survival of living organisms, especially humans, in the Martian atmosphere. Photosynthesis is the most important biochemical reaction on which almost all life depends. This complex process occurs in higher plants, algae and some bacteria such as cyanobacteria. Due to the very low percentage of oxygen in the Martian atmosphere, it seems that the use of photosynthetic species that are anaerobic and tolerant of adverse ecological conditions such as cyanobacteria can provide the oxygen needed by the Red Planet.