反馈误差学习神经网络在scara机器人中的应用

F. Passold, M. Stemmer
{"title":"反馈误差学习神经网络在scara机器人中的应用","authors":"F. Passold, M. Stemmer","doi":"10.1109/ROMOCO.2004.240645","DOIUrl":null,"url":null,"abstract":"This paper describes experimental results applying artificial neural networks to perform the position control of a real scara manipulator robot. The general control strategy consists of a neural controller that operates in parallel with a conventional controller based on the feedback error learning architecture. The main advantage of this architecture is that it does not require any modification of the previous conventional controller algorithm. MLP and RBF neural networks trained online have been used, without requiring any previous knowledge about the system to be controlled. The approach has performed very successfully, with better results obtained with the RBF networks when compared to PID and sliding mode positional controllers.","PeriodicalId":176081,"journal":{"name":"Proceedings of the Fourth International Workshop on Robot Motion and Control (IEEE Cat. No.04EX891)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Feedback error learning neural network applied to a scara robot\",\"authors\":\"F. Passold, M. Stemmer\",\"doi\":\"10.1109/ROMOCO.2004.240645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes experimental results applying artificial neural networks to perform the position control of a real scara manipulator robot. The general control strategy consists of a neural controller that operates in parallel with a conventional controller based on the feedback error learning architecture. The main advantage of this architecture is that it does not require any modification of the previous conventional controller algorithm. MLP and RBF neural networks trained online have been used, without requiring any previous knowledge about the system to be controlled. The approach has performed very successfully, with better results obtained with the RBF networks when compared to PID and sliding mode positional controllers.\",\"PeriodicalId\":176081,\"journal\":{\"name\":\"Proceedings of the Fourth International Workshop on Robot Motion and Control (IEEE Cat. No.04EX891)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth International Workshop on Robot Motion and Control (IEEE Cat. No.04EX891)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROMOCO.2004.240645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth International Workshop on Robot Motion and Control (IEEE Cat. No.04EX891)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMOCO.2004.240645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文介绍了应用人工神经网络对实际scara机械手进行位置控制的实验结果。一般控制策略包括基于反馈误差学习结构的神经控制器与传统控制器并行运行。这种结构的主要优点是它不需要对以前的常规控制器算法进行任何修改。在线训练的MLP和RBF神经网络已经被使用,不需要任何关于被控制系统的先前知识。该方法的效果非常好,与PID和滑模位置控制器相比,RBF网络的效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feedback error learning neural network applied to a scara robot
This paper describes experimental results applying artificial neural networks to perform the position control of a real scara manipulator robot. The general control strategy consists of a neural controller that operates in parallel with a conventional controller based on the feedback error learning architecture. The main advantage of this architecture is that it does not require any modification of the previous conventional controller algorithm. MLP and RBF neural networks trained online have been used, without requiring any previous knowledge about the system to be controlled. The approach has performed very successfully, with better results obtained with the RBF networks when compared to PID and sliding mode positional controllers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信