基于统计特征的儿童情绪分析

Isashri Padhi, H. Palo, S. Mishra, M. Mohanty
{"title":"基于统计特征的儿童情绪分析","authors":"Isashri Padhi, H. Palo, S. Mishra, M. Mohanty","doi":"10.1109/ICEEOT.2016.7754973","DOIUrl":null,"url":null,"abstract":"To characterize any speech signal, features plays an important role as a parameter to best describe a particular speaker from his/her voice. In emotional speech recognition system prosodic and spectral features provide a significant detecting parameter in differentiating various classes of emotions as these features closely resembles human vocal tract system. The statistical properties of these features vary with different emotional speech utterances and due to change in ascent, speaking style and language of the speaker. In this paper, an attempt is made taking into account these facts to categorize various classes of emotional speech. The result is promising in detecting four classes of emotions as angry, fear, sad and surprise of children database generated by us.","PeriodicalId":383674,"journal":{"name":"2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Statistical feature based child emotion analysis\",\"authors\":\"Isashri Padhi, H. Palo, S. Mishra, M. Mohanty\",\"doi\":\"10.1109/ICEEOT.2016.7754973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To characterize any speech signal, features plays an important role as a parameter to best describe a particular speaker from his/her voice. In emotional speech recognition system prosodic and spectral features provide a significant detecting parameter in differentiating various classes of emotions as these features closely resembles human vocal tract system. The statistical properties of these features vary with different emotional speech utterances and due to change in ascent, speaking style and language of the speaker. In this paper, an attempt is made taking into account these facts to categorize various classes of emotional speech. The result is promising in detecting four classes of emotions as angry, fear, sad and surprise of children database generated by us.\",\"PeriodicalId\":383674,\"journal\":{\"name\":\"2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEOT.2016.7754973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEOT.2016.7754973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

为了对任何语音信号进行表征,特征作为一个参数发挥着重要的作用,它可以从说话人的声音中最好地描述说话人。在情绪语音识别系统中,韵律和频谱特征与人类声道系统非常相似,为区分不同类型的情绪提供了重要的检测参数。这些特征的统计性质随着不同的情绪言语以及说话者的上升、说话风格和语言的变化而变化。本文试图综合考虑这些因素,对不同类型的情绪言语进行分类。结果表明,该方法在检测儿童愤怒、恐惧、悲伤、惊讶四类情绪数据库中具有良好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical feature based child emotion analysis
To characterize any speech signal, features plays an important role as a parameter to best describe a particular speaker from his/her voice. In emotional speech recognition system prosodic and spectral features provide a significant detecting parameter in differentiating various classes of emotions as these features closely resembles human vocal tract system. The statistical properties of these features vary with different emotional speech utterances and due to change in ascent, speaking style and language of the speaker. In this paper, an attempt is made taking into account these facts to categorize various classes of emotional speech. The result is promising in detecting four classes of emotions as angry, fear, sad and surprise of children database generated by us.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信