{"title":"太阳能组件用钠石灰玻璃宽带增透涂层的高温稳定性","authors":"G. Womack, P. Kamiński, J. Walls","doi":"10.1109/PVSC.2015.7356265","DOIUrl":null,"url":null,"abstract":"Reflections from glass surfaces reduce the efficiency of photovoltaic devices. Reflections can be reduced using a broadband Multi-layer Anti-Reflection (MAR) coating. For thin film CdTe modules, the glass is also the substrate. Manufacturers would prefer to use pre-MAR coated glass, so it is essential to establish if the MAR coating can withstand the module production process conditions. Thin film CdTe module fabrication requires temperatures up to ~500°C. Crazing may occur due to mismatch of the thermal expansion coefficients between the glass and the coating materials. The resilience of MAR coatings on soda lime glass, Eagle 2000™ Glass, and NSG TEC™ 7 has been tested by exposure to increasing temperatures up to 800°C to establish the point of failure. SEM imaging and reflection measurements were used to observe the damage caused. Surprisingly, the MAR coating is unaffected up to a temperature of 590oC on soda lime glass substrates and up to 800°C on Eagle Glass. This provides confidence that thin film CdTe module manufacturers can use existing processes with pre-MAR coated glass.","PeriodicalId":427842,"journal":{"name":"2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"High temperature stability of broadband Anti-Reflection coatings on soda lime glass for solar modules\",\"authors\":\"G. Womack, P. Kamiński, J. Walls\",\"doi\":\"10.1109/PVSC.2015.7356265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reflections from glass surfaces reduce the efficiency of photovoltaic devices. Reflections can be reduced using a broadband Multi-layer Anti-Reflection (MAR) coating. For thin film CdTe modules, the glass is also the substrate. Manufacturers would prefer to use pre-MAR coated glass, so it is essential to establish if the MAR coating can withstand the module production process conditions. Thin film CdTe module fabrication requires temperatures up to ~500°C. Crazing may occur due to mismatch of the thermal expansion coefficients between the glass and the coating materials. The resilience of MAR coatings on soda lime glass, Eagle 2000™ Glass, and NSG TEC™ 7 has been tested by exposure to increasing temperatures up to 800°C to establish the point of failure. SEM imaging and reflection measurements were used to observe the damage caused. Surprisingly, the MAR coating is unaffected up to a temperature of 590oC on soda lime glass substrates and up to 800°C on Eagle Glass. This provides confidence that thin film CdTe module manufacturers can use existing processes with pre-MAR coated glass.\",\"PeriodicalId\":427842,\"journal\":{\"name\":\"2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2015.7356265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2015.7356265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High temperature stability of broadband Anti-Reflection coatings on soda lime glass for solar modules
Reflections from glass surfaces reduce the efficiency of photovoltaic devices. Reflections can be reduced using a broadband Multi-layer Anti-Reflection (MAR) coating. For thin film CdTe modules, the glass is also the substrate. Manufacturers would prefer to use pre-MAR coated glass, so it is essential to establish if the MAR coating can withstand the module production process conditions. Thin film CdTe module fabrication requires temperatures up to ~500°C. Crazing may occur due to mismatch of the thermal expansion coefficients between the glass and the coating materials. The resilience of MAR coatings on soda lime glass, Eagle 2000™ Glass, and NSG TEC™ 7 has been tested by exposure to increasing temperatures up to 800°C to establish the point of failure. SEM imaging and reflection measurements were used to observe the damage caused. Surprisingly, the MAR coating is unaffected up to a temperature of 590oC on soda lime glass substrates and up to 800°C on Eagle Glass. This provides confidence that thin film CdTe module manufacturers can use existing processes with pre-MAR coated glass.